# 1984 AIME Problems/Problem 12

## Problem

A function $f$ is defined for all real numbers and satisfies $f(2+x)=f(2-x)$ and $f(7+x)=f(7-x)$ for all $x$. If $x=0$ is a root for $f(x)=0$, what is the least number of roots $f(x)=0$ must have in the interval $-1000\leq x \leq 1000$?

## Solution

If $f(2+x)=f(2-x)$, then substituting $t=2+x$ gives $f(t)=f(4-t)$. Similarly, $f(t)=f(14-t)$. In particular, $$f(t)=f(14-t)=f(14-(4-t))=f(t+10)$$

Since $0$ is a root, all multiples of $10$ are roots, and anything congruent to $4\pmod{10}$ are also roots. To see that these may be the only integer roots, observe that the function $$f(x) = \sin \frac{\pi x}{10}\sin \frac{\pi (x-4)}{10}$$ satisfies the conditions and has no other roots.

In the interval $-1000\leq x\leq 1000$, there are $201$ multiples of $10$ and $200$ numbers that are congruent to $4 \pmod{10}$, therefore the minimum number of roots is $\boxed{401}$.

## See also

 1984 AIME (Problems • Answer Key • Resources) Preceded byProblem 11 Followed byProblem 13 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions
ACS WASC
ACCREDITED
SCHOOL

## About

Our Team Our History Jobs

## Site Info

Terms Privacy Contact Us

## Help

School Books Community

## Stay Connected

Subscribe to get news and
updates from AoPS, or Contact Us.
© 2017
AoPS Incorporated
Invalid username
Login to AoPS