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Abstract. This paper develops some basic theorems in elementary number theory, especially

those appearing on mathematical Olympiads, from the perspective of groups, rings, and group

actions.

1 Introduction

In the mid seventeenth century, the French lawyer Pierre de Fermat wrote a
letter in which he challenged his friend Frénicle de Bessy to prove a famous
little theorem [1]. A secretive purveyor of mathematical puzzles in his day,
Fermat is credited with the discovery of many early results underlying modern
calculus, probability theory, and diophantine analysis [2]. He is remembered
in particular for a pair of theorems, his Little and Last theorems. The latter
withstood 357 years of investigation before a sophisticated solution was found
(finally!) by Andrew Wiles in 1994 [3]. The former, which is elementary, will be
proved in this paper. Indeed, Fermat’s Little Theorem is a central piece of our
discussion, which develops elementary number theory and modular arithmetic
from the perspective of abstract algebra.

We focus on the groups and rings of algebra. Groups, having the existence of
unique inverses as their chief property, capture the essence of multiplication in
modular arithmetic. Rings simply incorporate the addition operation. With this
perspective, emphasizing abstraction, we suggest to the reader that results such
as Fermat’s Little Theorem arise naturally as a progression that characterizes
multiplicative order with increasing specificity.

We also expend considerable energy motivating the discussion. Bystanders
see mathematics as a dull collection of axioms. Mathematicians, on the other
hand, have been known compare it to a Big Game Hunt in the Sahara Desert.
Thus, our second idea is to impart a good sense of the behavior behind these
axioms: what they do and how they relate.

To this end, the organization is as follows. In Section 2, we give basic defi-
nitions, including all of those that will be assumed later. It may be skipped if
the reader feels comfortable with groups; for students making this judgement,
the notions of subgroups, cosets, quotient groups, and group homomorphisms
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should not be especially encumbering. In Section 3, we introduce basic elements
of group actions and ring theory. We start with the general Orbit-Stabilizer
Theorem. From it, we arrive easily at Lagrange’s Theorem, Euler’s Theorem,
Fermat’s Little Theorem, Wilson’s Theorem, and Eisenstein’s Criterion. Sec-
tion 4 focuses on finding elements with specific orders. Using Fermat’s Little
Theorem, we connect the discussion with multiplication in the field Z/pZ. We
then build up the precise structure of Z/nZ, proving and using the Chinese
Remainder Theorem in the process. At last, we establish the Primitive Root
Theorem. As a bonus, we include an additional section, which introduces the
combinatorial Nullstellensatz, a powerful theorem concerning the zeros of mul-
tivariate polynomials. With it, one can solve many problems by writing down
and analyzing a suitably constructed polynomial.

2 Fundamentals

As an aid to the reader, we provide in this section a sketch of the results aris-
ing in the first week or so of an introductory course in abstract algebra. The
propositions and their corollaries in this section are manifold, though simple;
we leave some of their proofs as exercises for the reader.

Definition 2.1. A group (G, ·) is a set G together with a binary law of com-
position · : G×G→ G having the following three properties.

1. Associativity: the equality a · (b · c) = (a · b) · c holds for all a, b, c ∈ G.
2. Identity: an element e ∈ G exists, such that g · e = g = e · g for all g ∈ G.
3. Inverses: for each element g ∈ G there exists an h ∈ G such that g · h = e.

A group is called abelian or commutative if the law of composition is commuta-
tive.

For example, the integers under addition, or the positive reals under mul-
tiplication are examples of groups. The underlying set need not be infinite.
For example, let n be a positive integer and define X = {1, 2, . . . n}. There are
n! permutations of X, or bijective functions σ : X → X. Under the natural
composition of maps, these permutations give rise to the symmetric group Sn.

The immediate consequences of the group axioms are numerous; we collect
several here.

Proposition 2.1. A group has a unique identity element.

Proof. Suppose that e and f are identity elements. Then e = e · f = f.

Proposition 2.2 (Cancellation Law). If a, b, g ∈ G are such that a · g = b · g,
then a = b.
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Proof. Multiply through by g−1, obtaining

a = a · e = a · (g · g−1) = (a · g) · g−1 = (b · g) · g−1 = b · (g · g−1) = b · e = b.

Proposition 2.3 (Mutuality). If g · h = e, then h · g = e as well.

Proof. Write
e · h = h · e = h · (g · h) = (h · g) · h.

Now apply the Cancellation Law.

Proposition 2.4. Each group element g ∈ G has a unique inverse.

Proof. Let g ∈ G and suppose that x, y ∈ G are such that g · x = g · y = e. By
Mutuality, x · g = e, so that

x = x · e = x · (g · y) = (x · g) · y = e · y = y.

To promote diligence, we shall leave the proofs of the remaining propositions
in this section as exercises.

It is customary to exchange · for + as the notation for composition in an
abelian group. Respecting this convention, the identity of an arbitrary group
is often denoted 1, while the identity element is denoted 0 in a commutative
group. Considering its uniqueness, the inverse of an element g ∈ G is denoted
g−1; under this notation, mutuality becomes (g−1)−1 = g. As is typical, we will
henceforth omit the operator when context makes it clear what composition is
meant.

The associativity condition makes finite products of group elements unam-
biguous, and the two-sidedness of identity elements makes them and inverses
unique. Essentially, the group axioms allow us to make sense of so-called words
of a group, such as abca−1db−1a, as group elements. In particular, expressions
such as g3 = ggg and g−4 = g−1g−1g−1g−1 have natural interpretations.

Definition 2.2. A group homomorphism between the groups G and H is a
map φ : G → H such that φ(ab) = φ(a)φ(b) for all a, b ∈ G. A homomorphism
has as kernel, denoted ker(φ) := {g | g ∈ G,φ(g) = eH}, and an image, denoted
im(φ) := {φ(g) | g ∈ G}.

Proposition 2.5 (Composition). Suppose that φ : G→ H and ϕ : H → K are
group homomorphisms. Then the composition ϕ ◦ φ : G → K is also a group
homomorphism.

Homomorphisms often have other properties. For instance, a homomorphism
φ : G→ H is injective if ker(φ) = {eG} and surjective if im(φ) = H. are isomor-
phic, denoted G ∼= H. A homomorphism that is both injective and surjective is
called an isomorphism. A trivial example is the identity map 1G : G→ G is an
isomorphism of G.



2 FUNDAMENTALS 4

Proposition 2.6. Let φ : G → H be a group homomorphism. Then φ is an
isomorphism if and only if its inverse is.

Thus, two groups G and H are called isomorphic if there exists an isomor-
phism between them. This property, denoted G ∼= H, defines equivalence classes
of groups because the identity map gives reflexivity, the preceding gives sym-
metry, and composition gives transitivity. Isomorphisms are considered strong
equivalence relations, and one is usually only interested in establishing results
“up to isomorphism.” Indeed, the task of classifying finite simple groups means
grouping them into equivalence classes by isomorphism.

Definition 2.3. The order of a group (G, ·) is the cardinality of the set G and
is denoted by |G|. If a ∈ G and there exists a positive integer n such that an = e,
then we say that a has order n where n is the smallest such integer.

For instance, one speaks of the finite group of order two comprises because
all groups of two elements are isomorphic. If G = {1, g}, then g · g = 1 because
one also requires g · 1 = g and g · g 6= g · 1. Then an isomorphism φ : G → G′

between two such groups is given by φ(1) = 1′ and φ(g) = g′.

Definition 2.4. A subset H of G is called a subgroup of group G if composition
restricts to a map H ×H → H that makes H into a group. A subgroup N of G
is called normal if it is the kernel of a homomorphism from G, that is, if there
exists some group homomorphism φ : G→ K such that N = ker(φ).

A subgroup inherits the identity element and inverses from the overlying
group.

The notation for the product of two group elements is often extended to the
following products of an element and a subset:

H ⊂ G and a ∈ G, then aH := {ah |h ∈ H} and Ha := {ha |h ∈ H}.

Definition 2.5. If H is a subgroup of G, then a left coset of H is a set of the
form aH for some a ∈ G, and a right coset is a set Ha. The index of a subgroup
H is the number of distinct left cosets of H in G, denoted [G : H].

Definition 2.6. A subgroup N of G is normal if it is invariant under conju-
gation, or gNg−1 = N for all g ∈ G. If N is a normal subgroup of G, then the
quotient group G/N is the set of left cosets of N with the law of composition
(gN)(hN) = (gh)N and having order [G : N ].

Lemma 2.7 (First Isomorphism Theorem). If φ : G → H is a group homo-
morphism, then

G/ ker(φ) ∼= im(φ).

Lemma 2.8. Suppose that H and K are normal subgroups of G with H ⊆ K.
Then K/H is a normal subgroup of G/H and

(G/H)/(K/H) ∼= G/K.
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Exercises

Begin the following problems assuming that G is a group.

1. Verify that the rational numbers are a group under addition but not un-
der multiplication. What are some subsets of the rational numbers that
constitute a group under mutliplication?

2. Prove that for any a ∈ G, the set 〈a〉 = {an : n ∈ Z} is a subgroup of G.
This subgroup is called the cyclic subgroup of G generated by a. If G is a
group and an element g ∈ G is such that 〈g〉 = G, then the group G is
cyclic and g is a generator.

3. A subset H of a group G is a subgroup of G iff for all a, b ∈ H, the element
ab−1 is in H.

4. The intersection of two subgroups of G is also a subgroup of G.

5. Let H be a subgroup of G. The left (right) cosets of H partition G and
have cardinality |H|.

6. The center of G is the set Z(G) of elements of G that commute with all
of G, namely

Z(G) = {z ∈ G | gz = zg ∀g ∈ G}.

a) Prove that Z(G) is a subgroup of G.

b) Show that Z(G) is a normal subgroup of G.

7. Consider the map φ : G→ Aut(G) defined by φ(g) = ϕg, where ϕg is the
automorphism of G defined by ϕg(h) = ghg−1.

a) Show that φ is a homomorphism.

b) Show that ker(φ) = Z(G).

c) By the First Isomorphism Theorem, conclude that G/Z(G) ∼= Inn(G).

3 Basic Group and Ring Properties

In this section, we focus on group actions and their role in determining general
properties of order. We introduce rings and prove several easy results.

Definition 3.1. Let G be a group and S any nonempty set. A left group action
is a homomorphism from G to the group of permutations of S; in particular, we
regard the action as a map · : G × S → S such that g · (h · s) = (gh) · s and
e · s = s. The orbit of a point s ∈ S is the set Gs := {g · s | g ∈ G}, and the
stabilizer of s is the set Gs := {g ∈ G | g · s = s}.



3 BASIC GROUP AND RING PROPERTIES 6

For example, the cyclic group of order two, C2, always acts by exchanging
certain pairs of elements and fixing the remainder. Group actions often arise
in geometry – as transformations of the plane; for instance, C2 may act as
reflection along a line, or 180◦ rotation about a point. A group acts on itself,
naturally, via its multiplication rule. Another natural group action is given by
conjugation [4].

It is easily checked that the stabilizer Gs is a subgroup of G. To emphasize
this structure, we call Gs the stabilizer subgroup of s. As is the case with groups,
the · is often omitted when its context is clear. As an introduction to the
axiomatics of group actions, let us prove a basic result about actions.

Proposition 3.1. The orbits of a group action G× S → S partition S; the set
of orbits is denoted S/G and called the orbit space.

Proof. We check for reflexivity, symmetry, and transitivity in the relation s ∼ t,
where s, t ∈ S, that indicates whether t ∈ Gs. We have s ∼ s as s = es ∈ Gs.
Now if s ∼ t, then t ∈ Gs, so that there exists an element g ∈ G such that
t = gs. It follows that

s = es = (g−1g)s = g−1(gs) = g−1t,

so that s ∈ Gt or t ∼ s as well. Finally, if s ∼ t and t ∼ u, then t = gs and
u = ht for some g, h ∈ G, so that

u = ht = h(gs) = (hg)s.

It follows that u ∈ Gs, so that s ∼ u, as required.

Thus, a group action provides equivalence classes (its orbits) on its image.
Two elements belonging to the same equivalence class are often said to be iden-
tified. Understanding structures is often key in mathematics. A group action
G × S → S can make S into a graph. Treating the set S as vertices and
drawing edges between pairs of elements sharing an orbit, we naturally form a
graph comprising a disjoint union of cliques. The following counting theorem
is equally easy to prove, yet in its generality underlies many interesting results.

Theorem 3.2 (Orbit-Stabilizer Theorem). Suppose G acts on S. Fix a point
s ∈ S arbitrarily, and let Ls be the set of left cosets of Gs in G. Then the map
f : Gs→ Ls defined by gs 7→ gGs is well defined and bijective. In particular,

|Gs| = [G : Gs] and |Gs| · |Gs| = |G|

for all s ∈ S.

Proof. Suppose gs = hs. Then

s = (g−1g)s = g−1(gs) = g−1(hs) = (g−1h)s,

so that g−1h ∈ Gs. It follows that g−1hGs = Gs, so that hGs = gGs, proving
that the map is well defined. By its definition, the map is surjective. Injectivity
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can be established by noting that if gGs = hGs, then g−1h ∈ Gs, so that
(g−1h)s = s. Finally,

hs = (g(g−1h))s = g((g−1h)s) = gs,

as desired. Now observe that |Gs| = |Ls| = [G : Gs]. It is easy to see that the
same number of elements of G carry s to each element of its orbit Gs, so that
the equivalent formula |Gs| · |Gs| = |G| is obtained.

As an application, one can easily deduce Burnside’s lemma, a combinatorial
lemma with a colorful history. For our present purposes, however, we deduce a
famous theorem of Lagrange.

Corollary 3.3 (Lagrange’s Theorem). If H is a subgroup of a finite group G,
then |G| = |H| · [G : H]. In particular, the order of the group is divisble by the
order of any subgroup or any group element.

Proof. Let LH be the set of cosets of H. Then G acts on LH by group multipli-
cation. The stabilizer GH is just H, and the orbit of H is all of H’s cosets. By
the Orbit-Stabilizer Theorem, we have

|G| = |GH | · |LH | = |H| · [G : H].

Observe that the index [G : H] is a positive integer. To finish the proof, note that
any group element by itself generates a cyclic subgroup of the same order.

When the extra structure of a second operation is introduced, we move into
the theory of rings.

Definition 3.2. A ring is a set R together with commutative and associative
binary operations +, · : R×R→ R such that addition makes R into an abelian
group and multiplication distributes over addition. Elements having multiplica-
tive inverses are called units, and the set of all units is denoted R×.

The set of integers Z is a ring, and so is the set of Gaussian integers Z[i].
The latter example shows that formal elements can be added to a ring. The
polynomials with integer coefficients over a single variable are denoted by Z[x];
they, too, form a ring.

Often, multiplicative commutativity is dropped, but we maintain the axiom
for the sake of simplicity. We remark also that the set of units R× forms a group
under multiplication in R; accordingly, R× is often called the group of units.

Definition 3.3. An ideal is a subset I ⊂ R that is closed under addition and
satisfies rI ⊂ I for all r ∈ R. An ideal P is called prime if whenever r, s ∈ R
and rs ∈ P then either r or s lies in P. Many closed operations on ideals are
defined: intersections, sums, and products of two ideals in the same ring are
also ideals, where the latter two are defined as

I + J := {i+ j | i ∈ I, j ∈ J} and
IJ := {i1j1 + · · ·+ injn | i1, . . . , in ∈ I; j1, . . . , jn ∈ J}.
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Two ideals I and J in a ring R are called coprime if I + J = R. By analogy
to cosets of normal subgroups, the additive cosets a + I := {a + i | i ∈ I}
yield the quotient ring R/I, where addition and multiplication are defined as
(a+ I) + (b+ I) = (a+ b) + I and (a+ I)(b+ I) = (ab) + I.

In the integers, the multiples of 2 are denoted 2Z and form an ideal. The
ideal aR is often abbreviated (a); still more generally, the ideal a1R+ · · ·+ akR
is written (a1, . . . , ak). Ideal addition respects this notation, in that (a) + (b) =
(a, b), as can be quickly verified. Multiplication of ideals obeys IR = I. More
curiously, multiplication also obeys IJ ⊂ I ∩ J.

Now let m and n be positive integers and let p be a prime. Because m divides
n if and only if n ∈ mZ, the definitions of prime and coprime ideals generalize
the familiar arithmetic notions. If p divides the product mn, or equivalently
mn ∈ pZ, then p divides m or p divides n, so that {m,n} ∩ pZ 6= ∅. If m
and n are coprime, then there exist integers s and t such that ms + nt = 1.
It follows that 1 ∈ mZ + nZ, so that mZ + nZ = Z. Perhaps not surprisingly,
(2)(3) = (6) in the ring of integers. In many rings, ideal factorization generalizes
our notion of elementary factorization. However, we might equally well write
(2) + (3) = (1).

Let us recall the fundamental idea of a group homomorphism; it extends in
a natural way to rings.

Definition 3.4. A ring homomorphism is a map ϕ : R→ S between two rings
R and S such that ϕ(1R) = 1S and, for all a, b ∈ R,

ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b).

Again, if ϕ is bijective, then its inverse is also a ring homomorphism and the
rings R and S are isomorphic.

By analogy with group theory, the kernel of a ring homomorphism ϕ : R→ S
is defined ker(ϕ) := {r ∈ R |ϕr = 0S}. Likewise, the image of a ring homomor-
phism is defined im(ϕ) := {s ∈ S | ∃r ∈ R : s = ϕ(r)}.

It is easy to check that the kernel is an ideal. Conversely, every ideal is
the kernel of a homomorphism. For example, this can be seen from the natural
quotient map R→ R/I defined by a 7→ a+I for all a ∈ R. Thus, quotient groups
G/H and quotient rings R/I come equipped with natural homomorphisms,

φ : G→ G/H and ϕ : R→ R/I;

each identifies a group (ring) element with the (additive) coset containing the
element.

We remark that there is a tendency to blur the distinction between a coset
in the image and a representative (element) of the coset. When context is clear,
this loses no information; however, we shall reserve g and a as typical quotient
group and quotient ring elements (cosets) of which g and a are representatives,
respectively.

After these introductory concepts, we can now understand “the integers
modulo n” more precisely as the quotient ring Z/nZ.
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Corollary 3.4 (Euler’s Theorem). If a and n be coprime positive integers, then
n | aφ(n) − 1, where φ is Euler’s totient function.

Proof. There are φ(n) integers b such that 0 ≤ b < n and (b, n) = 1; these are in
bijective correspondence with units in (Z/nZ)×. For, given such a b, there exist
integers s and t such that bs+ nt = 1; passing to the quotient ring, we have

1 = bs+ nt = bs+ nt = bs+ nt = bs,

so that b is a unit. Conversely, any integer not relatively prime to n cannot have
a multiplcative inverse in Z/nZ. Now apply Lagrange’s Theorem.

The following is an immediate consequence.

Corollary 3.5 (Fermat’s Little Theorem). If a is an integer and p is prime,
then p | ap − a.

Proof. Either p | a or p - a. In the latter case, note that φ(p) = p − 1 and use
Euler’s Theorem.

Nontrivial information is conveyed by homomorphisms. For example, it is
sometimes easier to study factorization in a quotient ring. Consider the quotient
map

π : Z[x]→ Z[x]/pZ[x] ∼= (Z/pZ)[x],

where p is a prime. Then P (x) = Q(x)R(x) =⇒ P (x) = Q(x)R(x). With this
in mind, a simple contradiction argument gives the following result.

Corollary 3.6 (Eisenstein’s Criterion). If P (x) = anx
n + an−1x

n−1 + · · ·+ a0

and p is a prime such that p - an, p2 - a0, and p | ai for all i = 0, . . . , n− 1, then
P (x) is irreducible.

Proof. For, P (x) = anx
n. If P (x) = Q(x)R(x) where both Q and R are noncon-

stant, then both Q(x) and R(x) are divisible by x. Thus, p |Q(0) and p |R(0),
contrary to p2 - a0.

The familiar division algorithm for polynomials in a single variable depends
only on the existence of multiplicative inverses. Although the division algorithm
applies to arbitrary fields, many ring elements do not have inverses, so the algo-
rithm does not apply to division by any arbitrary polynomial in R[x]. However,
it is easy to see that division by a polynomial with a unit as leading coefficient
proceeds as usual.

Proposition 3.7 (Factor Theorem). Let p(x) ∈ R[x] be a polynomial of degree
n. For each element a ∈ R, there exists a polynomial q(x) of degree n− 1 such
that p(x)− p(a) = (x− a)q(x).

Proof. The division algorithm gives p(x)− p(a) = (x− a)q(x) + r, where r ∈ R
is constant. Plugging in x = a shows that r = 0.

Corollary 3.8 (Wilson’s Theorem). For a prime p, we have p | (p− 1)! + 1.
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Proof. Assume p > 2. Consider the polynomial p(x) = xp−1 − 1 in the field
Z/pZ. By Fermat’s Little Theorem, the roots of p(x) are 1, 2, . . . , p − 1. Using
the factor theorem to expand, we have

p(x) = (x− 1)(x− 2) · · · (x− (p− 1)) = xp−1 − · · ·+ 1 · 2 · · · (p− 1).

The result follows by comparing this expansion to xp−1 − 1.

Exercises

Let G be a finite group.

1. Show that conjugation gives a group action G×G→ G defined by (g, h) 7→
h−1gh.

2. Let G× S → S be a group action. Show that for any s ∈ S the stabilizer
Gs := {g | gs = s} is a subgroup of G.

3. (Burnside’s lemma) Let G × S → S be a group action and let Sg denote
the subset of S fixed by g ∈ G. Prove that the number of orbits is given
by

|S/G| = 1
|G|

∑
g∈G
|Sg|.

4. Determine the number of ways to color the vertices of a cube with k-colors,
where two colorings are the same if one can be rotated into the other.

a) Argue that the rotations of a cube have a natural composition law
making them into a group.

b) Classify each rotations as one of several types.

c) Deter the colorings fixed by each type of rotation and apply Burnside’s
lemma.

5. Determine the prime ideals in Z[x] and R[x].

6. (Gauss’s Lemma) A primitive polynomial over Z is a polynomial p(x) ∈
Z[x] such that the coefficients of p(x) have no common divisors other than
the units ±1.

a) Show that the product of two primitive polynomials is a primitive poly-
nomial. Hint : examine the converse in a quotient ring.

b) Let f(x) ∈ Z[x] be a primitive polynomial that factors as f(x) =
g(x)h(x) for some nonconstant polynomials g(x), h(x) ∈ Q[x]. Argue that
without loss of generality, there exist positive integers m and n such that
mg(x) and nh(x) are primitive polynomials in Z[x].

c) Deduce that mn is a unit.

d) Conclude that a polynomial in Z[x] factors in Z[x] if and only if it
factors in Q[x]. Note that a similar result where Z is replaced by a unique
factorization domain R and Q is replaced by the field of fractions F of R.
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7. Let a and n be coprime positive integers. Prove Euler’s theorem, that n
divides aφ(n) − 1, by examining multiplication by a in the group of units
(Z/nZ)×.

8. Let p be a prime. Prove Fermat’s little theorem by considering an action of
Cp, the cyclic group of order p, on the Cartesian product {1, 2, 3, . . . , a}p.

9. Let p be a prime. Show that the cyclotomic polynomial

φp(z) = zp−1 + · · ·+ z + 1

is irreducible over Z. Hint: consider transformations that preserve irre-
ducibility.

10. (First Sylow Theorem) Let p be a prime, let n be a positive integer, and
suppose the order of G is an integer divisible by pn.

a) Consider the collection C := {S ⊂ G : |S| = pn}, let |G| = pnr, and
suppose that pm is the largest power of p dividing r. Show that pm is the
largest power of p that divides |C|.
b) Consider the group action G × C → C defined by left multiplication,
S 7→ gS = {gh : h ∈ S ⊂ G} for each g ∈ G. Show that for some set
S ∈ C, the orbit GS has cardinality not divisible by pm+1.

c) Using the Orbit-Stabilizer Theorem, deduce that the stabilizer of this
subset is large, namely that pn ≤ |GS |.
d) By considering an element s ∈ S, argue that |S| ≥ |GS |.
e) Conclude that G has a subgroup of order pn.

11. (Second Sylow Theorem) A p-group is finite group whose order is a power
of p. A Sylow p-subgroup of G is a subgroup of G is a p-group whose order
pk is the largest power of p dividing |G|.
a) Let a p-group H act on a finite set S and define the subset S0 := {s ∈
S |Hs = H} of elements fixed by H. Use the Orbit-Stabilizer Theorem to
show that |S| ≡ |S0| (mod p).

b) Let P be a Sylow p-subgroup of G and let H be p-subgroup of G.
Consider the collection C of left cosets of P and let H act on C by left
multiplication. Deduce that some coset gP is fixed by each element of H.

c) Conclude that g−1Hg ⊂ P.
d) Argue that the Sylow p-subgroups are conjugate to one another and
thus isomorphic.

12. (Third Sylow Theorem) Let np denote the number of Sylow p-subgroups
of a finite group G, and let q be their common order. Show that np divides
|G|/q and that np ≡ 1 (mod p).
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4 Structure Theorems

Many of the theorems in the previous section have in common that they give
general properties of specific group elements. This section considers more de-
tailed structures and addresses a dual question, whether there exist group ele-
ments with specific properties. With the goal of constructing group elements of
particular orders, we shall proceed combinatorially.

For the remainder of this paper, G denotes a group, and m and n denote
positive integers. We will abbreviate Z/nZ by Z/nZ and (Z/nZ)× by (Z/nZ)× .
The order of an element g ∈ G is written OG(g), or simply O(g) where the
context is clear. Recall that the order of an element is the least positive integer
such that gO(g) = 1, or∞ if no such integer exists. For any group element g ∈ G,
the cyclic subgroup generated by g is defined by 〈g〉 := {. . . , g−1, 1, g, g2, . . . }; if
O(g) <∞, then 〈g〉 = {1, g, . . . , gO(g)−1}. From the definition of O(g), we have
gn = 1 if and only if O(g) |n. In particular, {n ∈ Z | gn = 1} = O(g)Z.

Proposition 4.1. Let a group element g ∈ G have finite order. Then the order
of each element of the subgroup 〈g〉 divides O(g), and every divisor of O(g) is
the order of an element of 〈g〉.

Proof. Consider a ∈ 〈g〉; there exists a unique integer 0 ≤ m < O(g) such
that a = gm. Then an = (gm)n = gmn, so that an = 1 ⇐⇒ O(g) |mn.
Writing n = O(g), it follows that aO(g) = 1, and O(a) |O(g). Moreover, O(a) =
lcm(O(g),m)/m. Writing O(g) = d1d2 and putting m = d2 yields O(a) =
lcm(O(g), d2)/d2 = O(g)/d2 = d1, as desired.

The proposition above shows that we can easily find group elements with
small orders. In particular, the reader familiar with the poset of divisibility
relations in the positive integers might notice that we have just shown that the
set of group element orders is an order ideal [5]. A more difficult investigation
concerns the existence of elements with large orders, a matter to which we now
turn.

Proposition 4.2. If G is abelian and contains elements of coprime orders, m
and n, then G contains an element of order mn.

Proof. Let a, b ∈ G be such that O(a) = m and O(b) = n; we claim that the
product ab is satisfactory. Observe that O(ab) |mn, since

(ab)mn = amnbmn = (am)n(bn)m = 1.

On the other hand, aO(ab) = b−O(ab) ∈ 〈a〉 ∩ 〈b〉. Because 1 is the only common
positive divisor of m and n, the orders of aO(ab) and b−O(ab) must be 1; that is,
both elements are the identity. Then O(ab) is divisible by O(a) and O(b), as
required.

We should like to find elements of coprime order. Knowing that order low-
ering is an easy process, we might hope for the following compromise.
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Proposition 4.3. If G is abelian and contains elements of order m and n, then
G contains an element of order lcm(m,n).

Proof. Consider k so large that the index set I := {1, . . . , k} defines exponents
such that m =:

∏
i∈I p

ai
i and n =:

∏
i∈I p

bi
i , where the sequence p1, p2, p3, . . . is

the primes in increasing order. Define IA := {i ∈ I | ai ≥ bi}, the set of indices
having maximal exponents in the factorization of m, and denote the complement
IB := I \ IA. By Proposition 3.1, G contains elements of orders m :=

∏
i∈IA

pai
i

and n :=
∏
i∈IB

pbi
i . Because IA ∩ IB = ∅, the orders m and n are coprime, so

that Proposition 3.2 gives an element of G having order

mn =
∏
i∈IA

pai
i

∏
i∈IB

pbi
i =

∏
i∈I

p
max{ai,bi}
i = lcm(m,n),

as desired.

Motivated by our ability to usefully combine any pair of elements with finite
order in an abelian group, we introduce the following definitions that amalga-
mate all of the elements.

Definition 4.1. A positive integer m is a universal order for the group G if
gm = 1 for all g ∈ G. The smallest such integer is the least universal order of G
and is denoted OG.

A group need not have any universal order. Consider, for example, the group
of integers under addition. In fact, there exist groups in which every element
has finite order but no universal order exists; consider Q/Z under addition, for
example.

But not all is lost. Because the positive integers are well-ordered, if a group
has a universal order then it has a least universal order. And there exist condi-
tions that guarantee a universal order.

Proposition 4.4. Every finite abelian group G contains an element of order
OG, and OG divides |G|.

Proof. Consider group elements g1, . . . , gk ∈ G. By Lagrange’s Theorem, these
elements have finite orders O(g1), . . . , O(gk) dividing |G|. It follows that the least
common multiple of these elements is the least universal order. In particular, it
divides |G|. Now observe that

lcm(O(g1), O(g2), O(g3)) = lcm(lcm(O(g1), O(g2)), O(g3)).

With this observation, we construct group elements h1, . . . , hk ∈ G such that
the orders O(hi) = lcm(O(g1), . . . , O(gi)) by applying Proposition 3.3 to the
pairs {hi, gi+1}. Then hk has least universal order, as required.

Definition 4.2. Let R be a ring. An nonzero element a ∈ R is called a zerodi-
visor (pl. zerodivisors) if there exists another nonzero element b ∈ R such that
ab = 0. A ring with no zerodivisors is an integral domain.
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For example, Z/3Z is an integral domain but Z/4Z is not (since 22 = 0). In
fact, any field is an integral domain, because nonzero elements have multiplica-
tive inverses. For, if 1 = a−1a and ab = 0, then

b = (a−1a)b = a−1(ab) = a−10 = 0.

This is the crucial property behind our next statement.

Lemma 4.5 (Root Theorem). Let R be an integral domain. A polynomial
p(x) ∈ R[x] of degree n has at most n roots, including multiplicity.

Proof. Use induction. The case n = 1 is trivial. So let n > 1 and suppose p(x)
has a root x0. Then the division algorithm gives p(x) = (x− x0)q(x) + r where
q(x) has degree n− 1 and r is constant. Plugging in x = x0 gives r = 0. Now if
a is a root of p(x), then (a− x0)q(a) = 0, implying that a = x0 or a is a root of
q(x). It follows that p(x) has at most one more root than q(x), as required.

We are at last ready to discuss modular arithmetic.

Proposition 4.6. (Z/pZ)× is a cyclic group.

Proof. Introduce the least universal order m := O(Z/pZ)× , and consider the
polynomial p(x) := xm−1.On the one hand, Proposition 4.4 shows thatm | p−1;
hence, m ≤ p−1. On the other hand, by definition, all p−1 elements of (Z/pZ)×

are roots of p(x). The Root Theorem shows that m ≥ p− 1. Thus, m = p− 1.
And it follows that (Z/pZ)× contains an element of order p − 1, which is the
generator we sought.

One might ask whether the primality condition can be relaxed in the above
proposition. In fact, precisely the same proof holds for all finite fields, which
necessarily have prime power orders [4]. However, the finite field Fpk and the
quotient ring Z/pkZ cease being isomorphic for k > 1 (for instance, p becomes a
zerodivisor in the ring), so more machinery is needed to assess the usual modular
arithmetic.

Introducing powers of p leads to consideration of zp−1; curiously, it is easier
to consider compare such a difference to zero than equate zp with 1 in its own
right. Naturally, one has the factorization zp − 1 = (z − 1)(zp−1 + · · ·+ z + 1),
to which we turn.

Lemma 4.7. Let p an odd prime. Then for each integer x, the cyclotomic
polynomial φp(x) = xp−1 + · · ·+ x+ 1 is not divisible by p2.

Proof. Suppose for contradiction’s sake that p2|φp(a) for some integer a. Then
in modulo p,

0 ≡ (a− 1)(ap−1 + · · ·+ a+ 1)
= ap − 1
≡ a− 1.
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Thus, a = 1 + kp for some integer k. But then in modulo p2,

1 + a+ · · ·+ ap−1 = 1 + (1 + kp) + · · ·+ (1 + kp)p−1

≡ 1 + (1 + kp) + · · ·+ (1 + (p− 1)kp)
= p(1 + kTp−1),

where Tp−1 = 1 + · · ·+ (p−1) = (p−1)p/2. Since p is odd, p divides Tp, so that
φp(a) ≡ p (mod p2), a contradiction.

The following gem is immediate.

Lemma 4.8 (Lifting Lemma). Let p be an odd prime. If a and k are nonnegative
integers such that pk - a− 1, then pk+1 - ap − 1.

Proof. One writes ap − 1 = (a − 1)(ap−1 + · · · + a + 1), and observes that p
divides the second factor at most once.

Returning, we need a means of comparing different moduli. Observe that for
all pairs of positive integers m and n there exists a natural ring homomorphism
ϕm,n : Z/mnZ→ Z/nZ due to the ideal containment mnZ ⊂ nZ. In particular,
each coset in Z/nZ is partitioned by additive cosets in Z/mnZ; these partitions
comprise the preimages. For example, consider the map ϕ3,2 : Z/6Z → Z/2Z.
The preimage of 1 = 1 + 2Z is the collection ϕ−1

3,2(1) = {1 + 6Z, 3 + 6Z, 5 + 6Z}.
Because 1 ∈ Z/mnZ 7→ 1 ∈ Zn, it follows that O(Z/nZ)×(a) |O(Z/mnZ)×(a) for
all a ∈ (Z/mnZ)× . That is, the multiplicative order of a unit in modulo mn is
divisible by the order it assumes in modulo n.

As it turns out,
(
Z/pkZ

)× is almost always cyclic.

Proposition 4.9. The group
(
Z/pkZ

)× is cyclic if and only if p is odd or k ≤ 2.

Proof. Consider the case p = 2. Observe that both (Z/2Z)× and (Z/4Z)× are
cyclic while (Z/8Z)× is not; we have 12 ≡ 33 ≡ 52 ≡ 72 ≡ 1 (mod 8). Now
take an integer k > 3 and consider the natural homomorphism

(
Z/2kZ

)× →
(Z/8Z)× . Because the map is surjective, a generator of

(
Z/2kZ

)× would map
to a generator in (Z/8Z)× , of which there are none.

Now assume p > 2 and consider k = 2. Let g ∈
(
Z/p2Z

)× be such that
ϕp,p(g) generates (Z/pZ)× . Then O(Z/pZ)×(g) = p − 1 and we have that p −
1 divides O(Z/p2Z)×(g + mp) for all m. By Lagrange’s Theorem, the orders

{O(Z/p2Z)×(g + mp)}m are divisors of |
(
Z/p2Z

)× | = φ(p2) = p(p − 1). Thus,
O(Z/p2Z)×(g +mp) ∈ {p− 1, p(p− 1)} for all m. Suppose that g has order p− 1

in
(
Z/p2Z

)×
. Then

(g + p)p−1 ≡ gp−1 + gp−2p(p− 1) ≡ 1− pgp−2 (mod p2).



4 STRUCTURE THEOREMS 16

Because the image of g generates (Z/pZ)× , g is coprime to p, and it follows that
the order of g + p is not p− 1. Thus, at least one of g and g + p is a generator
of
(
Z/p2Z

)×
.

To complete the proof for k > 2, we claim that an integer g that generates(
Z/pk−1Z

)× also generates
(
Z/pkZ

)×
. By the natural homomorphism(

Z/pkZ
)× → (

Z/pk−1Z
)×
,

we have that the order pk−2(p− 1) of g in
(
Z/pk−1Z

)× divides the order of g in(
Z/pkZ

)×
. By Lagrange’s theorem, O(Z/pkZ)×(g) divides pk−1(p − 1). Finally,

as pk−1 - gpk−3(p−1) − 1, the lifting lemma gives pk - gpk−2(p−1) − 1.

The strategy employed in final paragraph of the preceeding proof merits
particular attention. We realize a strong and abstract deduction by essentially
squeezing an equality case out of an inequality; observe how Lagrange’s theorem
acts as an upper bound while the natural homomorphism and lifting lemma
provide a lower bound that happens to be sharp in the integer divisibility lattice.

All that remains in extending our primitive roots proposition is generaliza-
tion from prime powers to arbitrary integers. The techniques to this end are
varied and eclectic, and the best motivation comes from practice. We shall use
the Chinese Remainder Theorem. However, to understand it and its usage, we
require several notions from our earlier encounter with ring theory, which we
recall presently. Two ideals I, J ⊂ R are coprime if their sum is the entire over-
lying ring, or I + J = R. Ideal products are defined and obey the containment
IJ ⊂ I ∩J. As might be hoped, addition and multiplication of ideals is commu-
tative and distributive in a commutative ring. Quotient rings R/I are defined
in terms of additive cosets, r+I, having operations (a+I)+(b+I) = (a+b)+I
and (a+ I)(b+ I) = (ab) + I inherited from R.

Lastly, the direct product of the rings R1, . . . , Rk is just the ring structure
on the cartesian product obtained by allowing the factors to act coordinatewise;
more precisely, the elements are k-tuples such as (a1, . . . , ak) and (b1, . . . , bk)
where ai, bi ∈ Ri, and the operations are defined as

(a1, . . . , ak) + (b1, . . . , bk) = (a1 + b1, . . . , ak + bk),
(a1, . . . , ak)(b1, . . . , bk) = (a1b1, . . . , akbk).

Note that the additive and multiplicative identities are (0, . . . , 0) and (1, . . . , 1).
Intuitively, the behavior of a ring element as it appears in multiple quotient

rings should provide information about that element in some combined quotient
ring, and vice versa. This is the content of the theorem we are about to prove.

Theorem 4.10 (Chinese Remainder Theorem). If R is a ring and I1, I2, . . . , Ik
are pairwise coprime ideals, then I1I2 · · · Ik = I1∩ I2∩· · ·∩ Ik =: I and the map

f : R/I → R/I1 × · · · ×R/Ik

defined by f(r + I) := (r + I1, . . . , r + Ik) is a ring isomorphism.
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Proof. First, we check that I is well defined. Observe that

R =
∏
i 6=1

(I1 + Ii) ⊂ I1 +
∏
i 6=1

Ii ⊂ R,

implying that I1 + I2I3 · · · In = R. Now if J and K are coprime ideals, J ∩K =
(J ∩K)(J +K) ⊂ KJ + JK ⊂ JK. But the reverse containment always holds,
so J ∩ K = JK. Using J = I1 and K = I2 as a base case together with the
inductive step

I1 ∩

(
k⋂
i=2

Ii

)
= I1 ∩

(
k∏
i=2

Ii

)
=

k∏
i=1

Ii,

we see that I1I2 · · · In = I1 ∩ · · · ∩ In. Hence, I is indeed well-defined. Now
consider the ring homomorphism ϕ : R 7→

∏n
i=1R/Ii defined by

r
ϕ7→ (r + I1, r + I2, . . . , r + In).

Note that ker(ϕ) = I1∩· · ·∩In = I. To see that ϕ is surjective, we will find r ∈ R
such that r ∈ 1+I1 and r ∈

∏
i6=1 Ii; this is sufficient because, for such r, we have

ϕ(r) = (1, 0, . . . , 0). But we already saw that 1 ∈ R = I1 +I2 · · · In, so 1 = j+j∗

for some j ∈ I1, j∗ ∈ I2 · · · In and r = 1− j = j∗ has the properties we sought.
Finally, the First Isomorphism Theorem [7] gives the central isomorphism in

R/I ∼= R/ ker(ϕ) ∼= im(ϕ) =
n∏
i=1

R/Ii,

as desired.

This abstract formulation has a more elementary corollary, often given the
same name, in the integers.

Corollary 4.11 (Chinese Remainder Theorem). Let k be a positive integer and
suppose that integers m1, . . . ,mk are pairwise coprime. Then for each k-tuple
(n1, . . . , nk) of integers such that 0 ≤ ni < mi for each i there exists a unique
integer n such that 0 ≤ n < m1 · · ·mk and for all indices i,

ni ≡ n (mod mi).

Moreover, this correspondence is bijective.

Proof. Observe that if i 6= j then there exist integers a and b such that ami +
bmj = 1. Thus, 1 ∈ miZ + mjZ, implying that miZ + mjZ = Z. Moreover,
(miZ)(mjZ) = (mimj)Z. The ideals {miZ}i meet the criteria in the Theorem
3.1 and this in turn gives the ring isomorphism

Z/m1 · · ·mkZ ∼= Z/m1Z× · · · × Z/mkZ.

Identifying each additive coset a+ bZ with the unique nonnegative integer less
than |b| it contains, we reduce this bijection to the claims.
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There is a subtlety involved in using the Chinese Remainder Theorem to de-
scribe (Z/nZ)× . The ring isomorphism Z/m1 · · ·mkZ ∼= Z/m1Z× · · · ×Z/mkZ
respects both additive and multiplicative structures, but what we actually de-
sire is a group isomorphism on the respective groups of units. Note that a ring
isomorphism φ : R → S carries units to units, since φ(a)φ(a−1) = φ(aa−1) =
φ(1R) = 1S . Thus, dropping the additive property of φ and restricting the do-
main and image, ring isomorphisms induce isomorphisms between unit groups.
Finally, the unit group of a direct product is the direct product of the corre-
sponding unit groups, so that

(Z/nZ)× ∼=

(
k∏
i=1

Z/miZ

)×
∼=

k∏
i=1

(Z/miZ)× .

We are at last ready for this section’s main result.

Theorem 4.12 (Primitive Root Theorem). The group (Z/nZ)× is cyclic if and
only if n ∈ {2, 4} or n ∈ {pk, 2pk} for some positive integer k and odd prime p.

Proof. Write n =
∏m
i=1 p

ai
i and consider a residue class g ∈ (Z/nZ)× . By the

Chinese Remainder Theorem,

O(Z/nZ)×(g) = lcm(O(Z/pa1
1 Z)×(g), . . . , O(Z/pam

m Z)×(g)).

If g is a generator in modulo n, then g is a generator in modulo pai
i for each i.

Under this hypothesis, the equation above reduces to

m∏
i=1

(pi − 1)pai−1
i = φ(n)

= O(Z/nZ)×

= lcm({O(Z/pai
i Z)×(g)}i)

= lcm({(pi − 1)pai−1
i }i),

so that the numbers {(pi − 1)pai−1
i }i are pairwise coprime. Thus, if (Z/nZ)×

is cyclic, then n cannot be divisible by both 4 and an odd prime or divisible by
two odd primes. Of the remaining candidates, only those of the form 2pk are
new. But φ(2pk) = φ(pk), so that any odd integer generating modulo pk also
generates modulo 2pk.

Now that we have answered which moduli have generators, we turn to a
dual question that merits attention: given an integer, for which moduli is it
a generator? Once more, it is natural to study the query for prime moduli.
However, progress in this direction has proven very difficult. The following
conjecture was made by Emil Artin in 1927 [8].

Conjecture 4.1 (Artin’s Conjecture). Suppose a 6= −1 is a nonsquare integer.
Let P denote the set of primes, and denote by S(a) the set of primes p for which
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a generates (Z/pZ)× . Then

1. S(a) has positive density inside the set of primes, in particular |S(a)| =∞;
2. if a are squarefree, then the density equals the Artin constant

CArtin =
∏
p∈P

(
1− 1

p(p− 1)

)
= 0.3739558136 . . . .

Artin’s conjecture has resisted a complete solution for over eighty years.
Nonetheless, several notable achievements have been realized. In 1967, Hooley
gave conditional proof establishing the conjecture assuming parts of the Gener-
alized Riemann Hypothesis [9]. A 1984 paper [10] by Gupta and Murty showed
that the conjecture holds for infinitely many a. In 1986, Heath-Brown extended
this infinitude of solutions, showing, amazingly, that there are at most two prime
numbers a violating the claims [11]. It is not known, however, which value(s),
if any, fail. So, while Artin’s conjecture is known to hold for at least one value
a ∈ {3, 5, 7}, we still cannot tell which, and in fact, no particular value of a has
yet been proven to satisfy the conditions. †

Exercises

1. (USAMO 2005) Prove that the system

x6 + x3 + x3y + y = 147157

x3 + x3 + y2 + y + z9 = 157147

has no solutions in integers x, y, and z.

2. (IMO Short List 1997/N4) Show that if an infinite arithmetic progression
of positive integers contains a square and a cube, it must contain a sixth
power.

3. (Euler’s Criterion) The Legendre symbol is defined as follows: if p is an
odd prime and a is an integer,

(
a

p

)
=


0 if p divides a
1 if a is a square in Z/pZ
−1 otherwise.

Show that (
a

p

)
≡ a(p−1)/2 (mod p).

4. Let p be an odd prime. Show that for any integers a, b,(
a

p

)(
b

p

)
=
(
ab

p

)
.

Thus, the Legendre symbol is multiplicative in its top argument.
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5. Recall that a Fermat prime is a prime number of the form 22n

+ 1. An
odd prime p is called orderly if for each integer a,(

a

p

)
= −1 ⇐⇒ a generates Z/pZ.

Prove that an odd prime is orderly if and only if it is a Fermat prime.

6. (IMO Short List 1998) Find all positive integers n such that 2n−1 divides
m2 + 9 for some integer m.

7. (Italian TST 2006/5) For each positive integer n define the set An = {a ∈
Z : 1 ≤ a ≤ n;n | an + 1}.
a) Find all n such that An 6= ∅.
b) Find all n such that |An| is even and nonzero.

c) Does there exist an integer n such that |An| = 130?

8. Let p be a prime. Denote by S the set of all primitive roots in Z/pZ. Com-
pute

∑
a∈S a (mod p). Hint: investigate a connection with the Möbius

function and cyclotomic polynomials.

9. (?) Determine whether or not there exist arbitrarily long sequences of
consecutive positive integers no two of which have the same number of
prime divisors.

5 Nullstellensatz

The following discussion is heavily inspired by, indeed contains many excerpts
from, a paper by Noga Alon [12]. By now, the reader should be capable of
following the excellent presentation there and is therefore encouraged to read
that literature.

The theory in this section generalizes familiar results about zeros of uni-
variate polynomials, which we recall presently. Consider a polynomial f having
coefficients in an integral domain R. If f can be written as anxn+ · · ·+a1x+ao
and there are n + 1 values x such that f(x) = 0, then f = 0 identically. If
r1, . . . , rk are roots of the polynomial then f(x) = h(x)(x − r1) · · · (x − rk) for
some polynomial h(x) with coefficients in R. Moreover, the degree of h will be
n − k. Finally, if f has degree n, any set of n + 1 values in its coefficient ring
contains a non-zero.

Lemma 5.1 (Brick Lemma). Fix a polynomial P ∈ R[x1, . . . , xn], where R is
an integral domain. Suppose that the degree of P as a polynomial in xi is at most
ti for 1 ≤ i ≤ n, and let Si ⊂ R be such that |Si| ≥ ti + 1. If P (s1, . . . , sn) = 0
for all tuples (s1, . . . , sn) ∈ S1 × · · · × Sn, then P = 0.

The proof of this lemma is left as an exercise. This lemma is simply the
natural generalization of the familar univariate result and expresses a property
of the zero polynomial.
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Theorem 5.1 (Ideal Decomposition). Fix a polynomial f ∈ R[x1, . . . , xn],
where R is an integral domain. Let S1, . . . , Sn be nonempty subsets of F and
define gi(xi) =

∏
s∈Si

(xi − s). If f(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
S1 × · · · × Sn, then there are polynomials h1, . . . , hn ∈ R[x1, . . . , xn] such that
deg(hi) ≤ deg(f)− deg(gi) and

f =
n∑
i=1

higi.

Proof. Write gi(xi) =
∏
s∈Si

(xi − s) = xti+1
i −

∑ti
j=0 gijx

j
i ., and note that

xti+1
i =

∑ti
j=0 gijx

j
i for all x ∈ Si.

Let f be the polynomial that results when each xdi
i where di > ti is re-

peatedly replaced by xdi−ti−1
i

∑ti
j=0 gijx

j as much as possible. Note that f
is obtained by subtracting products higi from f, where the degree of hi does
not exceed deg(f) − deg(gi). Moreover, f(x1, . . . , xn) = f(x1, . . . , xn) for all
(x1, . . . , xn) ∈ S1 × Sn. Hence, f(x1, . . . , xn) = 0 for all such (x1, . . . , xn). Fi-
nally, by the brick lemma, f = 0, completing the proof.

I have called this theorem ideal decomposition because the equation for
f reads f ∈ (g1, . . . , gn). In fact, in the multivariate case, the formulation is
slightly stronger because it includes a nontrivial statement about the degrees
involved. The statement about degrees is immediate in the single variable case,
where it can clearly be improved to an equation. However, it is key to the power
of the multivariate theory.

Theorem 5.2 (Inverse Bricks Theorem). Let f ∈ R[x1, . . . , xn], where R is
an integral domain. Suppose the coefficient of xt11 · · ·xtnn is nonzero, where∑n
i=1 ti = deg(f). Then if S1, . . . , Sn are subsets of R with |Si| > ti, there

exists a point (x1, . . . , xn) ∈ S1 × · · · × Sn such that

f(x1, . . . , xn) 6= 0.

Proof. Assume that |Si| = ti + 1 for all i. Suppose the result is false, and
define gi(xi) =

∏
s∈Si

(xi − s). By the ideal decomposition theorem, there are
polynomials hi ∈ F [x1, . . . , xn] satisfying deg(hj) ≤

∑n
i=1 ti−deg(gj) such that

f =
n∑
i=1

higi.

The coefficient of xt11 · · ·xtnn on the left is nonzero. However, the degree of
higi = hi

∏
s∈Si

(xi − s) is at most deg(f), and so any monomials of degree
deg(f) in it are divisible by xti+1

i . Because the monomial xt11 · · ·xtnn violates this
property for every i, its coefficient on the right is 0, the desired contradiction.

Following a trend in the previous two results, the subsets of Rn involved in
this generalization again take the form of a direct products. A distinction that
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may be surprising is that direct products guaranteed to containing a non-zero
are numerous. However, this multiplicity may be motivated by consideration
of the explosion of potential maximal degree terms due to the definition of the
degree of a multivariate polynomial.

It turns out that these multivariate generalizations are highly versatile in
ways that are not anticipated by the single variable case. Developing a sense of
this behavior is the goal of the exercises, to which we now turn.

5.1 Exercises

The theory described above, referred to as combinatorial Nullstellensatz,1 pro-
vides a powerful tool for combinatorics and combinatorial number theory prob-
lems, as the following exercises will show. In fact, Alon proves these results and
many more, so the interested reader is again referred his paper.

1. Prove the brick lemma.

2. (Chevalley-Warning theorem, Alon Theorem 3.1) Let p be a prime and let
P1, . . . , Pm ∈ Z/pZ[x1, . . . , xn] be m polynomials. If n >

∑m
i=1 deg(Pi)

and the polynomials Pi have a common zero (c1, . . . , cn), then they have
another common zero.

a) Suppose the result is false and define

f =
m∏
i=1

(
1− Pi(x1, . . . , xn)p−1

)
− δ

n∏
j=1

∏
c 6=cj

(xj − c),

where δ is such that f(c1, . . . , cn) = 0. Show that f(s1, . . . , sn) = 0 for all
(s1, . . . , sn) ∈ (Z/pZ)n .

b) Find s1, . . . , sn ∈ Z/pZ such that f(s1, . . . , sn) is nonzero.

3. (Erdös-Ginzburg-Ziv theorem) For any positive integer n and any 2n− 1
integers, there are n whose sum is divisible by n.

a) (Cauchy-Davenport, Alon Theorem 3.2) First establish the following
lemma: if p is a prime and A,B are nonempty subsets of Z/pZ, then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Argue that it suffices to consider a counterexample A + B ⊂ C where
|C| = |A|+ |B| − 2 and study the polynomial

f =
∏
c∈C

(x+ y − c).

b) Show that the case where n is prime follows from the Cauchy-Davenport
lemma.

c) Extend the result to all n by inducting on prime factors.
1The reader is invited to look up Hilbert’s Nullstellensatz and establish the reason for the

nomenclature.
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4. (Alon Lemma 8.1) Let A = (aij) be an n×n matrix with coefficients in a
field F. The permanent of A is defined as

Per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where the sum runs over all permutations of n elements.

Suppose that Per(A) is nonzero. Show that for any vector b ∈ Fn and
any family of sets S1, . . . , Sn ⊂ F, each of cardinality 2, there is a vector
x ∈ S1 × · · · × Sn such that Ax differs from b in every coordinate.

5. (Alon Theorem 4.1) Let p be a prime, h ∈ Z/pZ[x0, . . . , xk], and let
A0, A1, . . . , Ak be nonempty subsets of Z/pZ. Define

⊕h
k∑
i=0

Ai = {a0 + · · ·+ ak : ai ∈ Ai, h(a0, . . . , ak) 6= 0}.

Write |Ai| = ci + 1 and define m = −deg(h) +
∑k
i=0 ci. Show that if the

coefficient of xc00 · · ·x
ck

k in

(x0 + x1 + · · ·+ xk)mh(x0, . . . , xk)

is nonzero as an element of Z/pZ, then∣∣∣∣∣⊕h
k∑
i=0

Ai

∣∣∣∣∣ ≥ m+ 1.

6. (Alon Proposition 4.7) If p is prime and A and B are nonempty subsets
of Z/pZ, then

|{a+ b : a ∈ A, b ∈ B, ab 6= 1}| ≥ min{p, |A|+ |B| − 3}.

7. (Alon Theorem 6.1) Let p be a prime and let G = (V,E) be a loopless2

graph with average degree bigger than 2p − 2 and maximum degree at
most 2p− 1. Show that G contains a p-regular3 subgraph.

8. (Alon Theorem 6.2) Let p be a prime and G = (V,E) a graph with |V | >
d(p − 1) vertices where d is a positive integer. Show that there exists a
nonempty subset U ⊂ V of vertices such that the number of d-cliques that
U intersects is 0 modulo p.

9. (IMO 2007/6) Let n be a positive integer. Consider

S = {(x, y, z)|x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+ 1)3 − 1 points in three-dimensional space. Determine the
smallest possible number of planes, the union of which contains S but does
not include (0, 0, 0).

2A loop is an edge from a vertex to itself.
3A regular graph is one in which all vertices have the same degree, p in this case.
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