Do not try to case bash lol

by ItzsleepyXD, Apr 30, 2025, 9:08 AM

Let $n,d\geqslant 6$ be a positive integer such that $d\mid 6^{n!}+1$ .
Prove that $d>2n+6$ .

Short combi omg

by Davdav1232, Feb 3, 2025, 7:50 PM

Let \( n \) be a positive integer. A graph on \( 2n - 1 \) vertices is given such that the size of the largest clique in the graph is \( n \). Prove that there exists a vertex that is present in every clique of size \( n\)

Tilted Students Thoroughly Splash Tiger part 2

by DottedCaculator, Jun 21, 2024, 4:17 PM

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear.

Tiger Zhang
This post has been edited 1 time. Last edited by DottedCaculator, Jun 21, 2024, 4:17 PM

Monochromatic bipartite subgraphs

by L567, Jan 8, 2023, 2:40 PM

For a positive integer $n$, let $f(n)$ denote the largest integer such that for any coloring of a $K_{n,n}$ with two colors, there exists a monochromatic subgraph of $K_{n,n}$ isomorphic to $K_{f(n), f(n)}$. Is it true that for each positive integer $m$ we can find a natural $N$ such that for any integer $n \geqslant N$, $f(n) \geqslant m$?

Proposed by Suchir

Nordic squares!

by mathisreaI, Jul 13, 2022, 2:56 AM

Let $n$ be a positive integer. A Nordic square is an $n \times n$ board containing all the integers from $1$ to $n^2$ so that each cell contains exactly one number. Two different cells are considered adjacent if they share a common side. Every cell that is adjacent only to cells containing larger numbers is called a valley. An uphill path is a sequence of one or more cells such that:

(i) the first cell in the sequence is a valley,

(ii) each subsequent cell in the sequence is adjacent to the previous cell, and

(iii) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of $n$, the smallest possible total number of uphill paths in a Nordic square.

Author: Nikola Petrović
This post has been edited 1 time. Last edited by elitza, Jul 15, 2022, 11:59 AM
Reason: Added credit to problem's author.

Easy integer functional equation

by MarkBcc168, Jun 11, 2019, 12:20 AM

Let $\mathbb{Z}^+$ be the set of positive integers. Determine all functions $f : \mathbb{Z}^+\to\mathbb{Z}^+$ such that $a^2+f(a)f(b)$ is divisible by $f(a)+b$ for all positive integers $a,b$.

Isi 2016 geometry

by zizou10, May 8, 2016, 12:33 PM

Prove that there exists a right angle triangle with rational sides and area $d$ if and only if $x^2,y^2$ and $z^2$ are squares of rational numbers and are in Arithmetic Progression

Here $d$ is an integer.
This post has been edited 3 times. Last edited by zizou10, May 29, 2016, 6:41 AM

Find area!

by ComplexPhi, Feb 4, 2015, 4:08 PM

Let $O_1$ be a point in the exterior of the circle $\omega$ of center $O$ and radius $R$ , and let $O_1N$ , $O_1D$ be the tangent segments from $O_1$ to the circle. On the segment $O_1N$ consider the point $B$ such that $BN=R$ .Let the line from $B$ parallel to $ON$ intersect the segment $O_1D$ at $C$ . If $A$ is a point on the segment $O_1D$ other than $C$ so that $BC=BA=a$ , and if the incircle of the triangle $ABC$ has radius $r$ , then find the area of $\triangle ABC$ in terms of $a ,R ,r$.

The product of two p-pods is a p-pod

by MellowMelon, Jul 26, 2011, 9:17 PM

Let $p$ be a prime. We say that a sequence of integers $\{z_n\}_{n=0}^\infty$ is a $p$-pod if for each $e \geq 0$, there is an $N \geq 0$ such that whenever $m \geq N$, $p^e$ divides the sum
\[\sum_{k=0}^m (-1)^k {m \choose k} z_k.\]
Prove that if both sequences $\{x_n\}_{n=0}^\infty$ and $\{y_n\}_{n=0}^\infty$ are $p$-pods, then the sequence $\{x_ny_n\}_{n=0}^\infty$ is a $p$-pod.

-2 belongs to S

by WakeUp, Mar 19, 2011, 1:47 PM

Let $S$ be a set of integers containing the numbers $0$ and $1996$. Suppose further that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. Prove that $-2$ belongs to $S$.

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 357772
  • Total comments: 368
Search Blog
a