Computing functions

by BBNoDollar, May 18, 2025, 5:25 PM

Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )

Functional Inequality Implies Uniform Sign

by peace09, Jul 17, 2024, 12:00 PM

Let $\mathbb{R}$ be the set of real numbers. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that \[f(x+y)f(x-y)\geqslant f(x)^2-f(y)^2\]for every $x,y\in\mathbb{R}$. Assume that the inequality is strict for some $x_0,y_0\in\mathbb{R}$.

Prove that either $f(x)\geqslant 0$ for every $x\in\mathbb{R}$ or $f(x)\leqslant 0$ for every $x\in\mathbb{R}$.
This post has been edited 2 times. Last edited by peace09, Jul 17, 2024, 12:27 PM

3^x+4xy=5^y diophantine

by parmenides51, Dec 3, 2023, 8:20 AM

Find all ordered pairs of natural numbers $(x,y)$ such that$$3^x+4xy=5^y.$$
Proposed by i3435

Oh no! Inequality again?

by mathisreaI, Jul 13, 2022, 2:52 AM

Let $\mathbb{R}^+$ denote the set of positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for each $x \in \mathbb{R}^+$, there is exactly one $y \in \mathbb{R}^+$ satisfying $$xf(y)+yf(x) \leq 2$$

Floor double summation

by CyclicISLscelesTrapezoid, Jul 12, 2022, 12:52 PM

Grand finale of 2021 Iberoamerican MO

by jbaca, Oct 20, 2021, 11:08 PM

Consider a $n$-sided regular polygon, $n \geq 4$, and let $V$ be a subset of $r$ vertices of the polygon. Show that if $r(r-3) \geq n$, then there exist at least two congruent triangles whose vertices belong to $V$.

Constructing two sets from conditions on their intersection, union and product

by jbaca, Oct 20, 2021, 11:02 PM

For a finite set $C$ of integer numbers, we define $S(C)$ as the sum of the elements of $C$. Find two non-empty sets $A$ and $B$ whose intersection is empty, whose union is the set $\{1,2,\ldots, 2021\}$ and such that the product $S(A)S(B)$ is a perfect square.
This post has been edited 1 time. Last edited by jbaca, Oct 20, 2021, 11:54 PM
Reason: Typo

Sets with Polynomials

by insertionsort, Jul 20, 2021, 9:06 PM

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as
\begin{align*}
(x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z)
\end{align*}with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

Mmmmmm...Tasty!

by whatshisbucket, Jun 26, 2017, 7:03 AM

An integer $n>2$ is called tasty if for every ordered pair of positive integers $(a,b)$ with $a+b=n,$ at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers?

Proposed by Vincent Huang

IMO Shortlist 2010 - Problem N1

by Amir Hossein, Jul 17, 2011, 2:46 AM

Find the least positive integer $n$ for which there exists a set $\{s_1, s_2, \ldots , s_n\}$ consisting of $n$ distinct positive integers such that
\[ \left( 1 - \frac{1}{s_1} \right) \left( 1 - \frac{1}{s_2} \right) \cdots \left( 1 - \frac{1}{s_n} \right) = \frac{51}{2010}.\]

Proposed by Daniel Brown, Canada

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 359191
  • Total comments: 368
Search Blog
a