Number Theory

by TUAN2k8, Apr 18, 2025, 3:25 PM

Find all positve integers m such that $m+1 | 3^m+1$

Inspired by 1984 IMO Problem 1

by sqing, Apr 18, 2025, 3:22 PM

Let $ a,b,c\geq 0 $ and $ a+b+c+a^2+b^2+c^2-abc=1. $ Prove that
$$ab+bc+ca- abc\le3\sqrt{3}-5$$$$ab+bc+ca-2abc\le18\sqrt{3}-31$$
This post has been edited 1 time. Last edited by sqing, 15 minutes ago

Inspired by 1984 IMO Problem 1

by sqing, Apr 18, 2025, 3:12 PM

Let $ a,b,c\geq 0 $ and $ a+b+c+a^2+b^2+c^2=1. $ Prove that
$$ab+bc+ca-2abc\le\dfrac{9}{2}-\dfrac{17}{6}\sqrt{\dfrac{7}{3}}$$$$ab+bc+ca-4abc\le\dfrac{13}{2}-\dfrac{25}{6}\sqrt{\dfrac{7}{3}}$$
This post has been edited 1 time. Last edited by sqing, 8 minutes ago

Interesting inequality

by sqing, Apr 18, 2025, 2:57 PM

Sum of divisors

by DinDean, Apr 18, 2025, 2:47 PM

Does there exist $M>0$, such that $\forall m>M$, there exists an integer $n$ satisfying $\sigma(n)=m$?
$\sigma(n)=$ the sum of all positive divisors of $n$.

Existence of perfect squares

by egxa, Apr 18, 2025, 9:48 AM

Find all natural numbers \(n\) for which there exists an even natural number \(a\) such that the number
\[
(a - 1)(a^2 - 1)\cdots(a^n - 1)
\]is a perfect square.

3D russian combo

by egxa, Apr 18, 2025, 9:41 AM

A natural number \(N\) is given. A cube with side length \(2N + 1\) is made up of \((2N + 1)^3\) unit cubes, each of which is either black or white. It turns out that among any $8$ cubes that share a common vertex and form a \(2 \times 2 \times 2\) cube, there are at most $4$ black cubes. What is the maximum number of black cubes that could have been used?

A problem with non-negative a,b,c

by KhuongTrang, Mar 4, 2025, 3:50 PM

Problem. Let $a,b,c$ be non-negative real variables with $ab+bc+ca\neq 0.$ Prove that$$\color{blue}{\sqrt{\frac{8a^{2}+\left(b-c\right)^{2}}{\left(b+c\right)^{2}}}+\sqrt{\frac{8b^{2}+\left(c-a\right)^{2}}{\left(c+a\right)^{2}}}+\sqrt{\frac{8c^{2}+\left(a-b\right)^{2}}{\left(a+b\right)^{2}}}\ge \sqrt{\frac{18(a^{2}+b^{2}+c^{2})}{ab+bc+ca}}.}$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim(t,t,0)$ where $t>0.$

Circles tangent to AD and AB intersect on AC

by gghx, Aug 3, 2024, 2:33 AM

In an acute triangle $ABC$, $AC>AB$, $D$ is the point on $BC$ such that $AD=AB$. Let $\omega_1$ be the circle through $C$ tangent to $AD$ at $D$, and $\omega_2$ the circle through $C$ tangent to $AB$ at $B$. Let $F(\ne C)$ be the second intersection of $\omega_1$ and $\omega_2$. Prove that $F$ lies on $AC$.

Constructing sequences

by SMOJ, Mar 31, 2020, 7:09 AM

Starting with any $n$-tuple $R_0$, $n\ge 1$, of symbols from $A,B,C$, we define a sequence $R_0, R_1, R_2,\ldots,$ according to the following rule: If $R_j= (x_1,x_2,\ldots,x_n)$, then $R_{j+1}= (y_1,y_2,\ldots,y_n)$, where $y_i=x_i$ if $x_i=x_{i+1}$ (taking $x_{n+1}=x_1$) and $y_i$ is the symbol other than $x_i, x_{i+1}$ if $x_i\neq x_{i+1}$. Find all positive integers $n>1$ for which there exists some integer $m>0$ such that $R_m=R_0$.

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 356085
  • Total comments: 368
Search Blog
a