Nice problem
by gasgous, May 10, 2025, 1:30 PM
Given that the product of three integers is
.What is the least possible positive sum of the three integers?

L
Malaysia MO IDM UiTM 2025
by smartvong, May 10, 2025, 1:01 PM
MO IDM UiTM 2025 (Category C)
Contest Description
Preliminary Round
Section A
1. Given that
such that
. Find the value of
and
.
2. Find the value of
and
such that 
3. If the value of
is
, then find the value of
.
Section B
1. Let
be the set of integers. Determine all functions
such that for all integer
:

2. The side lengths
of a triangle
are positive integers. Let
for any positive integer
.
If
and
, determine all possible perimeters of the triangle
.
Final Round
Section A
1. Given that the equation
has two roots, where one is twice of the other, find all possible values of
.
2. Let
Find the value of 
3. Find the smallest four-digit positive integer
such that
is an integer.
Section B
1. Given that
is
in triangle
, find the ratio of the side length
to the side length
.
2. Prove that
Contest Description
Malaysian intervarsity contest
Calculators are allowed.
Time: 2 hours
Age range: 18 - 25 years old
Calculators are allowed.
Time: 2 hours
Age range: 18 - 25 years old
Preliminary Round
Section A
1. Given that




2. Find the value of



3. If the value of



Section B
1. Let




2. The side lengths




If



Final Round
Section A
1. Given that the equation


2. Let


3. Find the smallest four-digit positive integer


Section B
1. Given that





2. Prove that

This post has been edited 1 time. Last edited by smartvong, Yesterday at 1:02 PM
Inequalities
by sqing, May 10, 2025, 12:50 PM
Angle Formed by Points on the Sides of a Triangle
by xeroxia, May 10, 2025, 10:28 AM
In triangle
, points
,
, and
lie on sides
,
, and
, respectively, such that
,
,
,
,
,
.
What is the measure of
?













What is the measure of

Calculate the distance AD
by MTA_2024, May 9, 2025, 3:50 PM
A semi-circle is inscribed in a quadrilateral
. The center
of the semi-circle is the midpoint of segment
. We have
and
.
Calculate the distance
.





Calculate the distance

Range if \omega for No Inscribed Right Triangle y = \sin(\omega x)
by ThisIsJoe, May 8, 2025, 2:02 PM
For a positive number \omega , determine the range of \omega for which the curve y = \sin(\omega x) has no inscribed right triangle.
Could someone help me figure out how to approach this?
Could someone help me figure out how to approach this?
L
Unknown triangle area
by smartvong, May 8, 2025, 1:38 AM
The diagram shows a convex quadrilateral
. The points
and
divide
into three equal parts while the points
and
divide
into three equal parts. The line segments
and
intersect at
. The line segments
and
intersect at
. Given that the areas of the triangles
,
and
are
,
, and
respectively, find the area of the triangle
.
![[asy]
import olympiad; // for marksegment
size(300);
pair A = (1,4);
pair B = (7,4.5);
pair C = (6.5,2);
pair D = (0,1);
// trisect AB
pair E = A + (B - A)/3;
pair F = A + 2*(B - A)/3;
// trisect CD
pair G = C + (D - C)/3;
pair H = C + 2*(D - C)/3;
// draw the quadrilateral
draw(A--B--C--D--cycle);
// draw the interior segments
draw(A--H);
draw(D--E);
draw(C--F);
draw(B--G);
// draw the “verticals” EH and FG
draw(E--H);
draw(F--G);
// intersections
pair I = intersectionpoint(A--H, D--E);
pair J = intersectionpoint(C--F, B--G);
// dots & labels
dot(A); dot(B); dot(C); dot(D);
dot(E); dot(F); dot(G); dot(H);
dot(I); dot(J);
label("A", A, NW);
label("B", B, NE);
label("C", C, SE);
label("D", D, SW);
label("E", E, N);
label("F", F, N);
label("G", G, S);
label("H", H, S);
label("I", I, W);
label("J", J, W);
// triangle‐center labels
label("154", (A + I + D)/3);
label("112", (E + I + H)/3);
label("99", (F + J + G)/3);
// congruence tick marks
// AE = EF = FB (single tick)
add(pathticks(A--E, 1));
add(pathticks(E--F, 1));
add(pathticks(F--B, 1));
// DH = HG = GC (double tick)
add(pathticks(D--H, 2));
add(pathticks(H--G, 2));
add(pathticks(G--C, 2));
[/asy]](//latex.artofproblemsolving.com/0/2/e/02ef53d31a73b2a46c6a1521ef6a55c318046d11.png)




















![[asy]
import olympiad; // for marksegment
size(300);
pair A = (1,4);
pair B = (7,4.5);
pair C = (6.5,2);
pair D = (0,1);
// trisect AB
pair E = A + (B - A)/3;
pair F = A + 2*(B - A)/3;
// trisect CD
pair G = C + (D - C)/3;
pair H = C + 2*(D - C)/3;
// draw the quadrilateral
draw(A--B--C--D--cycle);
// draw the interior segments
draw(A--H);
draw(D--E);
draw(C--F);
draw(B--G);
// draw the “verticals” EH and FG
draw(E--H);
draw(F--G);
// intersections
pair I = intersectionpoint(A--H, D--E);
pair J = intersectionpoint(C--F, B--G);
// dots & labels
dot(A); dot(B); dot(C); dot(D);
dot(E); dot(F); dot(G); dot(H);
dot(I); dot(J);
label("A", A, NW);
label("B", B, NE);
label("C", C, SE);
label("D", D, SW);
label("E", E, N);
label("F", F, N);
label("G", G, S);
label("H", H, S);
label("I", I, W);
label("J", J, W);
// triangle‐center labels
label("154", (A + I + D)/3);
label("112", (E + I + H)/3);
label("99", (F + J + G)/3);
// congruence tick marks
// AE = EF = FB (single tick)
add(pathticks(A--E, 1));
add(pathticks(E--F, 1));
add(pathticks(F--B, 1));
// DH = HG = GC (double tick)
add(pathticks(D--H, 2));
add(pathticks(H--G, 2));
add(pathticks(G--C, 2));
[/asy]](http://latex.artofproblemsolving.com/0/2/e/02ef53d31a73b2a46c6a1521ef6a55c318046d11.png)
This post has been edited 1 time. Last edited by smartvong, May 8, 2025, 1:38 AM
Interesting question from Al-Khwarezmi olympiad 2024 P3, day1
by Adventure1000, May 7, 2025, 4:10 PM
2012 preRMO p17, roots of equation x^3 + 3x + 5 = 0
by parmenides51, Jun 17, 2019, 12:42 PM
♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/
Archives

















































































Shouts
Submit
91 shouts
Contributors
Tags
About Owner
- Posts: 583
- Joined: Dec 16, 2006
Blog Stats
- Blog created: May 17, 2010
- Total entries: 327
- Total visits: 358487
- Total comments: 368
Search Blog