Inequalities

by Scientist10, Apr 23, 2025, 6:36 PM

If $x, y, z \in \mathbb{R}$, then prove that the following inequality holds:
\[
\sum_{\text{cyc}} \sqrt{1 + \left(x\sqrt{1 + y^2} + y\sqrt{1 + x^2}\right)^2} \geq \sum_{\text{cyc}} xy + 2\sum_{\text{cyc}} x
\]

Complicated FE

by XAN4, Apr 23, 2025, 11:53 AM

Find all solutions for the functional equation $f(xyz)+\sum_{cyc}f(\frac{yz}x)=f(x)\cdot f(y)\cdot f(z)$, in which $f$: $\mathbb R^+\rightarrow\mathbb R^+$
Note: the solution is actually quite obvious - $f(x)=x^n+\frac1{x^n}$, but the proof is important.
Note 2: it is likely that the result can be generalized into a more advanced questions, potentially involving more bash.

interesting function equation (fe) in IR

by skellyrah, Apr 23, 2025, 9:51 AM

Tangents forms triangle with two times less area

by NO_SQUARES, Apr 23, 2025, 9:08 AM

Let $DEF$ be triangle, inscribed in parabola. Tangents in points $D,E,F$ forms triangle $ABC$. Prove that $S_{DEF}=2S_{ABC}$. ($S_T$ is area of triangle $T$).
From F.S.Macaulay's book «Geometrical Conics», suggested by M. Panov
Attachments:

Existence of perfect squares

by egxa, Apr 18, 2025, 9:48 AM

Find all natural numbers \(n\) for which there exists an even natural number \(a\) such that the number
\[
(a - 1)(a^2 - 1)\cdots(a^n - 1)
\]is a perfect square.

FE solution too simple?

by Yiyj1, Apr 9, 2025, 3:26 AM

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?

Z[x], P(\sqrt[3]5+\sqrt[3]25)=5+\sqrt[3]5

by jasperE3, May 31, 2021, 4:28 PM

Prove that there is no polynomial $P$ with integer coefficients such that $P\left(\sqrt[3]5+\sqrt[3]{25}\right)=5+\sqrt[3]5$.

IMO 2014 Problem 4

by ipaper, Jul 9, 2014, 11:38 AM

Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$.

Proposed by Giorgi Arabidze, Georgia.

IMO Shortlist 2011, G4

by WakeUp, Jul 13, 2012, 11:41 AM

Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.

Proposed by Ismail Isaev and Mikhail Isaev, Russia

Find all sequences satisfying two conditions

by orl, Jul 13, 2008, 1:21 PM

Let $ n > 1$ be an integer. Find all sequences $ a_1, a_2, \ldots a_{n^2 + n}$ satisfying the following conditions:
\[ \text{ (a) } a_i \in \left\{0,1\right\} \text{ for all } 1 \leq i \leq n^2 + n;
\]

\[ \text{ (b) } a_{i + 1} + a_{i + 2} + \ldots + a_{i + n} < a_{i + n + 1} + a_{i + n + 2} + \ldots + a_{i + 2n} \text{ for all } 0 \leq i \leq n^2 - n.
\]
Author: Dusan Dukic, Serbia
This post has been edited 2 times. Last edited by orl, Jan 4, 2009, 8:47 PM

♪ i just hope you understand / sometimes the clothes do not make the man ♫ // https://beta.vero.site/

avatar

math_explorer
Archives
+ September 2019
+ February 2018
+ December 2017
+ September 2017
+ July 2017
+ March 2017
+ January 2017
+ November 2016
+ October 2016
+ August 2016
+ February 2016
+ January 2016
+ September 2015
+ July 2015
+ June 2015
+ January 2015
+ July 2014
+ June 2014
inv
+ April 2014
+ December 2013
+ November 2013
+ September 2013
+ February 2013
+ April 2012
Shouts
Submit
  • how do you have so many posts

    by krithikrokcs, Jul 14, 2023, 6:20 PM

  • lol⠀⠀⠀⠀⠀

    by math_explorer, Jan 20, 2021, 8:43 AM

  • woah ancient blog

    by suvamkonar, Jan 20, 2021, 4:14 AM

  • https://artofproblemsolving.com/community/c47h361466

    by math_explorer, Jun 10, 2020, 1:20 AM

  • when did the first greed control game start?

    by piphi, May 30, 2020, 1:08 AM

  • ok..........

    by asdf334, Sep 10, 2019, 3:48 PM

  • There is one existing way to obtain contributorship documented on this blog. See if you can find it.

    by math_explorer, Sep 10, 2019, 2:03 PM

  • SO MANY VIEWS!!!
    PLEASE CONTRIB
    :)

    by asdf334, Sep 10, 2019, 1:58 PM

  • Hullo bye

    by AnArtist, Jan 15, 2019, 8:59 AM

  • Hullo bye

    by tastymath75025, Nov 22, 2018, 9:08 PM

  • Hullo bye

    by Kayak, Jul 22, 2018, 1:29 PM

  • It's sad; the blog is still active but not really ;-;

    by GeneralCobra19, Sep 21, 2017, 1:09 AM

  • dope css

    by zxcv1337, Mar 27, 2017, 4:44 AM

  • nice blog ^_^

    by chezbgone, Mar 28, 2016, 5:18 AM

  • shouts make blogs happier

    by briantix, Mar 18, 2016, 9:58 PM

91 shouts
Contributors
Tags
About Owner
  • Posts: 583
  • Joined: Dec 16, 2006
Blog Stats
  • Blog created: May 17, 2010
  • Total entries: 327
  • Total visits: 356608
  • Total comments: 368
Search Blog
a