ISI UGB 2025 P7
by SomeonecoolLovesMaths, May 11, 2025, 11:28 AM
Consider a ball that moves inside an acute-angled triangle along a straight line, unit it hits the boundary, which is when it changes direction according to the mirror law, just like a ray of light (angle of incidence = angle of reflection). Prove that there exists a triangular periodic path for the ball, as pictured below.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.44, xmax = 9.4, ymin = -5.34, ymax = 5.46; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0); pen ttqqqq = rgb(0.2,0,0);
draw((-1.14,4.36)--(-4.46,-1.28)--(3.32,-2.78)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-1.14,4.36)--(-4.46,-1.28), linewidth(2) + ttqqqq);
draw((-4.46,-1.28)--(3.32,-2.78), linewidth(2) + ttqqqq);
draw((3.32,-2.78)--(-1.14,4.36), linewidth(2) + ttqqqq);
draw((-1.4789869126960866,-1.8547454538503692)--(-3.0139955173701907,1.1764654463952184), linewidth(2) + linetype("4 4"),EndArrow(6));
draw((-3.0139955173701907,1.1764654463952184)--(0.7266612107598007,1.3716679271692873), linewidth(2) + linetype("4 4"),EndArrow(6));
draw((0.726661210759801,1.3716679271692873)--(-1.4789869126960864,-1.8547454538503694), linewidth(2) + linetype("4 4"),EndArrow(6));
/* dots and labels */
dot((-1.14,4.36),dotstyle);
label("$A$", (-1.06,4.56), NE * labelscalefactor);
dot((-4.46,-1.28),dotstyle);
label("$B$", (-4.74,-1.14), NE * labelscalefactor);
dot((3.32,-2.78),dotstyle);
label("$C$", (3.4,-2.58), NE * labelscalefactor);
dot((-1.4789869126960866,-1.8547454538503692),dotstyle);
label("$D$", (-1.6,-2.3), NE * labelscalefactor);
dot((0.726661210759801,1.3716679271692873),dotstyle);
label("$E$", (0.8,1.58), NE * labelscalefactor);
dot((-3.0139955173701907,1.1764654463952184),dotstyle);
label("$F$", (-3.44,1.14), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/6/4/a/64a0c503b7bfc56ffb6d38210fd6e0e1e01df376.png)
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -8.44, xmax = 9.4, ymin = -5.34, ymax = 5.46; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0); pen ttqqqq = rgb(0.2,0,0);
draw((-1.14,4.36)--(-4.46,-1.28)--(3.32,-2.78)--cycle, linewidth(2) + zzttqq);
/* draw figures */
draw((-1.14,4.36)--(-4.46,-1.28), linewidth(2) + ttqqqq);
draw((-4.46,-1.28)--(3.32,-2.78), linewidth(2) + ttqqqq);
draw((3.32,-2.78)--(-1.14,4.36), linewidth(2) + ttqqqq);
draw((-1.4789869126960866,-1.8547454538503692)--(-3.0139955173701907,1.1764654463952184), linewidth(2) + linetype("4 4"),EndArrow(6));
draw((-3.0139955173701907,1.1764654463952184)--(0.7266612107598007,1.3716679271692873), linewidth(2) + linetype("4 4"),EndArrow(6));
draw((0.726661210759801,1.3716679271692873)--(-1.4789869126960864,-1.8547454538503694), linewidth(2) + linetype("4 4"),EndArrow(6));
/* dots and labels */
dot((-1.14,4.36),dotstyle);
label("$A$", (-1.06,4.56), NE * labelscalefactor);
dot((-4.46,-1.28),dotstyle);
label("$B$", (-4.74,-1.14), NE * labelscalefactor);
dot((3.32,-2.78),dotstyle);
label("$C$", (3.4,-2.58), NE * labelscalefactor);
dot((-1.4789869126960866,-1.8547454538503692),dotstyle);
label("$D$", (-1.6,-2.3), NE * labelscalefactor);
dot((0.726661210759801,1.3716679271692873),dotstyle);
label("$E$", (0.8,1.58), NE * labelscalefactor);
dot((-3.0139955173701907,1.1764654463952184),dotstyle);
label("$F$", (-3.44,1.14), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/6/4/a/64a0c503b7bfc56ffb6d38210fd6e0e1e01df376.png)
This post has been edited 1 time. Last edited by SomeonecoolLovesMaths, 4 hours ago
ISI UGB 2025 P2
by SomeonecoolLovesMaths, May 11, 2025, 11:16 AM
If the interior angles of a triangle
satisfy the equality,
prove that the triangle must have a right angle.


This post has been edited 1 time. Last edited by SomeonecoolLovesMaths, 4 hours ago
Drawing equilateral triangle
by xeroxia, May 11, 2025, 7:14 AM
Equilateral triangle
is given. Let
and
be the midpoints of
and
, respectively.
A point
on segment
is given. Draw equilateral
such that
is on
and
is on
.





A point







This post has been edited 1 time. Last edited by xeroxia, Today at 7:15 AM
The familiar right angle from the orthocenter
by buratinogigle, May 11, 2025, 5:33 AM
Let
be a triangle inscribed in a circle
with orthocenter
and altitude
. Let
be the midpoint of
. Line
meets
again at
. Line
meets
again at
. Let
be the orthogonal projection of
on the line
. Line
meets
again at
. Prove that
.



















Calculus
by youochange, May 10, 2025, 2:38 PM
find angle
by TBazar, May 8, 2025, 6:57 AM
Given
triangle with
. We take
,
point on AC, AB respectively such that
,
.
,
lines intersect at point
. If
, find 











JBMO Shortlist 2021 G5
by Lukaluce, Jul 2, 2022, 9:13 PM
Let
be an acute scalene triangle with circumcircle
. Let
and
be interior points of the sides
and
, respectively, such that
is parallel to
. Let
be a point on
such that
is parallel to
. The segments
and
intersect at
. The line
intersects
at
. Prove that
.
Proposed by Ervin Macić, Bosnia and Herzegovina



















Proposed by Ervin Macić, Bosnia and Herzegovina
This post has been edited 1 time. Last edited by Lukaluce, Jul 2, 2022, 10:08 PM
D'B, E'C and l are congruence.
by cronus119, May 22, 2022, 7:03 PM
Let
and
on
and
respectively in
such that
then draw line
through
such that
let
and
reflection of
and
to
respectively prove that
and
are congruence.
















a set of $9$ distinct integers
by N.T.TUAN, Mar 31, 2007, 5:13 AM
Let
be a set of
distinct integers all of whose prime factors are at most
Prove that
contains
distinct integers such that their product is a perfect cube.





"Do not worry too much about your difficulties in mathematics, I can assure you that mine are still greater." - Albert Einstein
Archives










Shouts
Submit
7 shouts
Tags
About Owner
- Posts: 312
- Joined: Mar 10, 2015
Blog Stats
- Blog created: Feb 11, 2016
- Total entries: 77
- Total visits: 22028
- Total comments: 32
Search Blog