Bigger Cyclic Sets Exist?

by FireBreathers, May 2, 2025, 10:17 AM

Define the set of numbers $a_1, . . . , a_m$ is $bigger$ than the set of numbers $b_1, . . . , b_n$ if among all inequalities of the form $a_i > b_j$ the number of true inequalities is at least $2$ times greater than the number of false ones. Prove that there do not exist three sets $X, Y, Z$ such that $X$ is $bigger$ than $Y$, $Y$ is $bigger$ than $Z$, $Z$ is $bigger$ than $X$.

Consecutive sum of integers sum up to 2020

by NicoN9, May 2, 2025, 6:09 AM

Let $a$ and $b$ be positive integers. Suppose that the sum of integers between $a$ and $b$, including $a$ and $b$, are equal to $2020$.
All among those pairs $(a, b)$, find the pair such that $a$ achieves the minimum.

4-var inequality

by RainbowNeos, May 1, 2025, 9:31 AM

4 variables with quadrilateral sides 2

by mihaig, Apr 29, 2025, 8:47 PM

D1024 : Can you do that?

by Dattier, Apr 29, 2025, 5:11 PM

Let $x_{n+1}=x_n^2+1$ and $x_0=1$.

Can you calculate $\sum\limits_{i=1}^{2^{2025}} x_i \mod 10^{30}$?
This post has been edited 1 time. Last edited by Dattier, Apr 29, 2025, 5:11 PM

Inequality with 3 variables and a special condition

by Nuran2010, Apr 29, 2025, 5:06 PM

For positive real numbers $a,b,c$ we have $3abc \geq ab+bc+ca$.
Prove that:

$\frac{1}{a^3+b^3+c}+\frac{1}{b^3+c^3+a}+\frac{1}{c^3+a^3+b} \leq \frac{3}{a+b+c}$.

Determine the equality case.

4 lines concurrent

by Zavyk09, Apr 9, 2025, 11:51 AM

Let $ABC$ be triangle with circumcenter $(O)$ and orthocenter $H$. $BH, CH$ intersect $(O)$ again at $K, L$ respectively. Lines through $H$ parallel to $AB, AC$ intersects $AC, AB$ at $E, F$ respectively. Point $D$ such that $HKDL$ is a parallelogram. Prove that lines $KE, LF$ and $AD$ are concurrent at a point on $OH$.

IMO 2023 P2

by 799786, Jul 8, 2023, 4:47 AM

Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$.
This post has been edited 5 times. Last edited by Amir Hossein, Aug 8, 2023, 5:43 PM

Geometry

by VicKmath7, Dec 26, 2019, 7:36 PM

Let $ABC$ be a triangle with circumcircle $\omega$. Let $l_B$ and $l_C$ be two lines through the points $B$ and $C$, respectively, such that $l_B  \parallel  l_C$. The second intersections of $l_B$ and $l_C$ with $\omega$ are $D$ and $E$, respectively. Assume that $D$ and $E$ are on the same side of $BC$ as $A$. Let $DA$ intersect $l_C$ at $F$ and let $EA$ intersect $l_B$ at $G$. If $O$, $O_1$ and $O_2$ are circumcenters of the triangles $ABC$, $ADG$ and $AEF$, respectively, and $P$ is the circumcenter of the triangle $OO_1O_2$, prove that $l_B  \parallel  OP \parallel l_C$.

Proposed by Stefan Lozanovski, Macedonia
This post has been edited 8 times. Last edited by VicKmath7, Dec 22, 2022, 4:10 PM

Generalized mirror problem

by Taha1381, May 2, 2019, 9:14 AM

We have a rectangle with it sides being a mirror.A light Ray enters from one of the corners of the rectangle and after being reflected several times enters to the opposite corner it started.Prove that at some time the light Ray passed the center of rectangle(Intersection of diagonals.)

Convex and concave functions in Real numbers -- Basic 1

by adityaguharoy, Mar 1, 2018, 1:44 PM

Convex functions
Let $f : \mathbb{R} \to \mathbb{R}$ be a function, and let $a,b$ be two real numbers with $a<b$. Then we say that $f$ is a convex function on the interval $[a,b]$ if and only if the following is true :
Given any $t \in [0,1]$ , and , any $x_1 , x_2 \in [a,b]$ then,
$$\boxed{f(tx_1 + (1-t)x_2) \le t \cdot f(x_1) + (1-t) \cdot f(x_2)}$$And we say that $f$ is strictly convex on $[a,b]$ if the above inequality is strict whenever $x_1 \ne x_2$ and $t \in (0,1)$.

Concave functions
Let $f : \mathbb{R} \to \mathbb{R}$ be a function, and let $a,b$ be two real numbers with $a<b$. Then we say that $f$ is a concave function on the interval $[a,b]$ if and only if the following is true :
Given any $t \in [0,1]$ , and , any $x_1 , x_2 \in [a,b]$ then,
$$\boxed{f(tx_1 + (1-t)x_2) \ge t \cdot f(x_1) + (1-t) \cdot f(x_2)}$$And we say that $f$ is strictly concave on $[a,b]$ if the above inequality is strict whenever $x_1 \ne x_2$ and $t \in (0,1)$.

Quick exercises



Let us celebrate
This post has been edited 2 times. Last edited by adityaguharoy, Mar 4, 2018, 7:25 AM

The oldest, shortest words — "yes" and "no" — are those which require the most thought.

avatar

adityaguharoy
Archives
+ February 2021
+ April 2016
Shouts
Submit
  • hi guys $~~~$

    by Yiyj1, Apr 9, 2025, 7:25 AM

  • You will be remembered

    by giangtruong13, Feb 26, 2025, 3:38 PM

  • 2025 shout!

    by just_a_math_girl, Jan 12, 2025, 7:25 AM

  • 2024 shout

    by bachkieu, Aug 22, 2024, 12:52 AM

  • helooooooooooo

    by owenccc, Sep 27, 2023, 12:59 AM

  • hullo :<

    by gracemoon124, Jul 14, 2023, 2:33 AM

  • hello $ $

    by LeoLionTank, Feb 17, 2023, 9:02 PM

  • Halo thear

    by HoRI_DA_GRe8, Oct 18, 2022, 7:44 AM

  • hi!!
    just found this and I can't wait to read more!
    so happy to have found this blog!

    by Morrigan_Black, Jan 28, 2022, 1:05 PM

  • still waiting for the mathlinks camp lol

    by CinarArslan, Jan 9, 2022, 1:55 PM

  • hello :D

    by CyclicISLscelesTrapezoid, Nov 29, 2021, 6:36 PM

  • Right below the shout box it says how many it has.

    by pith0n, May 11, 2021, 5:08 AM

  • Oh really the blog has 100 posts! I never counted the number of posts here. If I get some free time I will create a new page on my wordpress website and there I will post all the contents of this blog. So, make sure that you check the wordpress site.

    by adityaguharoy, Mar 21, 2021, 2:58 PM

  • Nice blog!

    by DCode10, Mar 10, 2021, 7:00 PM

  • Hi adityaguharoy! Nice blog!

    by masadca, Feb 4, 2021, 9:19 PM

118 shouts
Tags
number theory
algebra
calculus
Inequality
function
real analysis
Real Analysis 1
real numbers
combinatorics
continuity
geometry
polynomial
Wikipedia
inequalities
linear algebra
prime numbers
rational numbers
Sequence
Vectors and Matrices
Convergence
functional equation
gallery
identity
Irrational numbers
Lemma
mathematics
Matrices
algorithm
Calculus 1
countable sets
definition
differentiability
easy
equation
Example
images
Integral
interesting
Links
probability
set theory
trigonometry
uncountable sets
Vectors
analysis
bijection
bijective function
complex numbers
continuous function
convergence and divergence
counting
differentiation
Diophantine equation
Fibonacci sequence
fishes
Fractals
GCD
Geometric Inequalities
graph theory
Greatest Integer Function
interesting number
inverse of matrices
logic
lonesan
modulo
non-existence
numbers
pi
Pictures
puzzles
pythagoras
Recreation
Sequence and Series
sequence definition
series
Solution
solve
Theorem
triangle inequality
tribute
12-21
1968
2018
22dividedby7
259 X 39
acute angled triangle
announcement
AoPS
Apery s constant
article
Attachment
barnstar
Bertrand s postulate
Bolzano Weirestrass
BOTTEMA
bounds
bq
Candido s identity
Category I
Cauchy condensation
Celebration
chess
chess-puzzles
collection
combinatorial-number theory
Community
complement graph
complex-geometry
computer
Computer Programming
computer-programming
concave functions
Congruency
connected graph
construction
content of a polynomial
continuous
Convex Functions
convex-concave
Coronavirus
Cos
cosine rule
Covid-19
cube-root of 1
definitions
degree 2
Determinants
differentiable
Digits
Diophantus identity
divergence
Euclidean algorithm
euclidean geometry
Euler s number
ex falso quodlibet
factorization
false
Fiber
Floor
foundational mathematics
FRS degree 2
FRT
Function Construction
functions
Gauss Jordan Elimination
google
graph
greatest common divisor
greetings
Happy New Year
Hermite s identity
history
HMMT
infinity
Integers
integrable
integral-calculus
integration
irrational
isomorphic graphs
isomorphism in graph
kobayashi
Koch curve
Koch snowflake
Korselt
Korselt criterion
limit
link
Locally finite set
magma
Maple
mathematical theory
mathematicians
matrix
Measure theory
Memory
merry christmas
method
modular arithmetic
modulo 6
motto
notation
number
number of outcomes
Number of Real Number solution
number puzzles
Order
ordered pair
pascal s triangle
pattern
PDF
pigeonhole principle
polynomial approximation
positive real numbers
precautions
predicate claculus
predicate logic
prime
Prime number
project Euler
propositional calculus
propositional logic
Putnam
pythagorean tree
Quadratic
Ramsey
Ramsey Theory
rational
Real number equations
reverse under square
riemann integral
Safety
search
self complementary graphs
Sets
Sierpenski
Sierpinski Triangle
Sierpnski
sin
slogan
snowflake
software
song
squaring
Stone-Weirestrass
stronger PhP
Tan
tends
terminology
Tradition
Triangle
trigonometric inequalities
truth
twelvefold way
unity
VJIMC
Volterra s function
Weirestrass
willy s lemma
xzlbq
zeckendorf theorem
Zsigmondy
About Owner
  • Posts: 4657
  • Joined: Apr 29, 2014
Blog Stats
  • Blog created: Apr 26, 2016
  • Total entries: 101
  • Total visits: 26494
  • Total comments: 61
Search Blog
a