Complex Number Geometry

by gauss202, May 14, 2025, 12:21 PM

Describe the locus of complex numbers, $z$, such that $\arg \left(\dfrac{z+i}{z-1} \right) = \dfrac{\pi}{4}$.

Trig Identity

by gauss202, May 14, 2025, 12:12 PM

Inequalities

by sqing, May 14, 2025, 3:46 AM

Inequalities

by sqing, May 13, 2025, 11:31 AM

Let $a,b,c >2 $ and $ ab+bc+ca \leq 75.$ Show that
$$\frac{1}{a-2}+\frac{1}{b-2}+\frac{1}{c-2}\geq 1$$Let $a,b,c >2 $ and $ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{6}{7}.$ Show that
$$\frac{1}{a-2}+\frac{1}{b-2}+\frac{1}{c-2}\geq 2$$

Inequalities

by sqing, May 13, 2025, 9:04 AM

Let $a,b,c >1 $ and $ \frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=1.$ Show that$$ab+bc+ca \geq 48$$$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{3}{4}$$Let $a,b,c >1 $ and $ \frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2.$ Show that$$ab+bc+ca \geq \frac{75}{4}$$$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{6}{5}$$Let $a,b,c >1 $ and $ \frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=3.$ Show that$$ab+bc+ca \geq 12$$$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq \frac{3}{2}$$
This post has been edited 2 times. Last edited by sqing, Tuesday at 9:13 AM

2024 Mock AIME 1 ** p15 (cheaters' trap) - 128 | n^{\sigma (n)} - \sigma(n^n)

by parmenides51, Jan 29, 2025, 11:38 PM

Let $N$ be the number of positive integers $n$ such that $n$ divides $2024^{2024}$ and $128$ divides
$$n^{\sigma (n)} - \sigma(n^n)$$where $\sigma (n)$ denotes the number of positive integers that divide $n$, including $1$ and $n$. Find the remainder when $N$ is divided by $1000$.

Assam Mathematics Olympiad 2022 Category III Q14

by SomeonecoolLovesMaths, Sep 12, 2024, 11:40 AM

The following sum of three four digits numbers is divisible by $75$, $7a71 + 73b7 + c232$, where $a, b, c$ are decimal digits. Find the necessary conditions in $a, b, c$.
L

2019 SMT Team Round - Stanford Math Tournament

by parmenides51, Feb 6, 2022, 10:23 AM

p1. Given $x + y = 7$, find the value of x that minimizes $4x^2 + 12xy + 9y^2$.


p2. There are real numbers $b$ and $c$ such that the only $x$-intercept of $8y = x^2 + bx + c$ equals its $y$-intercept. Compute $b + c$.



p3. Consider the set of $5$ digit numbers $ABCDE$ (with $A \ne 0$) such that $A+B = C$, $B+C = D$, and $C + D = E$. What’s the size of this set?


p4. Let $D$ be the midpoint of $BC$ in $\vartriangle ABC$. A line perpendicular to D intersects $AB$ at $E$. If the area of $\vartriangle ABC$ is four times that of the area of $\vartriangle BDE$, what is $\angle ACB$ in degrees?


p5. Define the sequence $c_0, c_1, ...$ with $c_0 = 2$ and $c_k = 8c_{k-1} + 5$ for $k > 0$. Find $\lim_{k \to \infty} \frac{c_k}{8^k}$.


p6. Find the maximum possible value of $|\sqrt{n^2 + 4n + 5} - \sqrt{n^2 + 2n + 5}|$.


p7. Let $f(x) = \sin^8 (x) + \cos^8(x) + \frac38 \sin^4 (2x)$. Let $f^{(n)}$ (x) be the $n$th derivative of $f$. What is the largest integer $a$ such that $2^a$ divides $f^{(2020)}(15^o)$?


p8. Let $R^n$ be the set of vectors $(x_1, x_2, ..., x_n)$ where $x_1, x_2,..., x_n$ are all real numbers. Let $||(x_1, . . . , x_n)||$ denote $\sqrt{x^2_1 +... + x^2_n}$. Let $S$ be the set in $R^9$ given by $$S = \{(x, y, z) : x, y, z \in R^3 , 1 = ||x|| = ||y - x|| = ||z -y||\}.$$If a point $(x, y, z)$ is uniformly at random from $S$, what is $E[||z||^2]$?


p9. Let $f(x)$ be the unique integer between $0$ and $x - 1$, inclusive, that is equivalent modulo $x$ to $\left( \sum^2_{i=0} {{x-1} \choose i} ((x - 1 - i)! + i!) \right)$. Let $S$ be the set of primes between $3$ and $30$, inclusive. Find $\sum_{x\in S}^{f(x)}$.


p10. In the Cartesian plane, consider a box with vertices $(0, 0)$,$\left( \frac{22}{7}, 0\right)$,$(0, 24)$,$\left( \frac{22}{7}, 4\right)$. We pick an integer $a$ between $1$ and $24$, inclusive, uniformly at random. We shoot a puck from $(0, 0)$ in the direction of $\left( \frac{22}{7}, a\right)$ and the puck bounces perfectly around the box (angle in equals angle out, no friction) until it hits one of the four vertices of the box. What is the expected number of times it will hit an edge or vertex of the box, including both when it starts at $(0, 0)$ and when it ends at some vertex of the box?


p11. Sarah is buying school supplies and she has $\$2019$. She can only buy full packs of each of the following items. A pack of pens is $\$4$, a pack of pencils is $\$3$, and any type of notebook or stapler is $\$1$. Sarah buys at least $1$ pack of pencils. She will either buy $1$ stapler or no stapler. She will buy at most $3$ college-ruled notebooks and at most $2$ graph paper notebooks. How many ways can she buy school supplies?


p12. Let $O$ be the center of the circumcircle of right triangle $ABC$ with $\angle ACB = 90^o$. Let $M$ be the midpoint of minor arc $AC$ and let $N$ be a point on line $BC$ such that $MN \perp BC$. Let $P$ be the intersection of line $AN$ and the Circle $O$ and let $Q$ be the intersection of line $BP$ and $MN$. If $QN = 2$ and $BN = 8$, compute the radius of the Circle $O$.


p13. Reduce the following expression to a simplified rational $$\frac{1}{1 - \cos \frac{\pi}{9}}+\frac{1}{1 - \cos \frac{5 \pi}{9}}+\frac{1}{1 - \cos \frac{7 \pi}{9}}$$

p14. Compute the following integral $\int_0^{\infty} \log (1 + e^{-t})dt$.


p15. Define $f(n)$ to be the maximum possible least-common-multiple of any sequence of positive integers which sum to $n$. Find the sum of all possible odd $f(n)$


PS. You should use hide for answers. Collected here.
This post has been edited 3 times. Last edited by parmenides51, Feb 6, 2022, 10:58 AM

Find function

by trito11, Nov 11, 2019, 3:46 AM

Find $f:\mathbb{R^+} \to \mathbb{R^+} $ such that
i) f(x)>f(y) $\forall$ x>y>0
ii) f(2x)$\ge$2f(x)$\forall$x>0
iii)$f(f(x)f(y)+x)=f(xf(y))+f(x)$$\forall$x,y>0
This post has been edited 1 time. Last edited by trito11, Nov 11, 2019, 3:46 AM

Trunk of cone

by soruz, May 6, 2015, 5:11 PM

One hemisphere is putting a truncated cone, with the base circles hemisphere. How height should have truncated cone as its lateral area to be minimal side?

Stay insane,Coz it's your will, labour and pain,which takes you to the top of the mountain.

avatar

utkarshgupta
Archives
- September 2017
+ September 2016
+ July 2016
+ December 2015
+ August 2015
+ December 2014
Shouts
Submit
  • Here goes first post of 2025! Great blog.

    by math_holmes15, Jan 14, 2025, 8:53 AM

  • First post of 2024

    by Yiyj1, Feb 8, 2024, 5:40 AM

  • First post of 2023

    by HoRI_DA_GRe8, Jul 22, 2023, 7:45 AM

  • Nice blog ! Your isogonality lemma is really powerful !

    by 554183, Oct 14, 2021, 8:55 AM

  • Post plss....

    by samrocksnature, Apr 11, 2021, 10:12 PM

  • alas,this is ded

    by Hamroldt, Mar 18, 2021, 4:13 PM

  • Thanks for the nice blog.

    by Feridimo, Mar 6, 2020, 4:17 PM

  • I think this might be silly but ... when should we expect to have another post ?? I am very keen to see it :D

    by gamerrk1004, Nov 4, 2019, 4:54 PM

  • Let's all echo what's written in the blog description - Stay Insane / 'Cause it's your labor, will and pain/ That takes you to the top of soda fountain :D

    by Kayak, Oct 2, 2017, 7:18 PM

  • hey utkarsh jee is over now ... continue your elementary blog pleaseeeeeee!

    by kk108, Jun 17, 2017, 11:19 AM

  • Congrats on becoming a contest moderator!

    by Ankoganit, Mar 9, 2017, 5:22 AM

  • INTERSTING BLOG

    by kk108, Feb 19, 2017, 2:04 PM

  • I have no plans for this blog right now....
    No time here people !
    But lets see....
    I may try some combinatorics :P

    by utkarshgupta, Feb 15, 2017, 12:47 PM

  • Thanks for the nice blog!

    by Orkhan-Ashraf_2002, Feb 13, 2017, 6:34 PM

  • Revive it!!!
    Best blog out there, for sure!

    by rmtf1111, Jan 12, 2017, 6:02 PM

48 shouts
Tags
About Owner
  • Posts: 2280
  • Joined: Jan 4, 2013
Blog Stats
  • Blog created: Nov 30, 2013
  • Total entries: 86
  • Total visits: 40087
  • Total comments: 102
Search Blog
a