Plan ahead for the next school year. Schedule your class today!

G
Topic
First Poster
Last Poster
k a July Highlights and 2025 AoPS Online Class Information
jwelsh   0
Jul 1, 2025
We are halfway through summer, so be sure to carve out some time to keep your skills sharp and explore challenging topics at AoPS Online and our AoPS Academies (including the Virtual Campus)!

[list][*]Over 60 summer classes are starting at the Virtual Campus on July 7th - check out the math and language arts options for middle through high school levels.
[*]At AoPS Online, we have accelerated sections where you can complete a course in half the time by meeting twice/week instead of once/week, starting on July 8th:
[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC Problem Series[/list]
[*]Plus, AoPS Online has a special seminar July 14 - 17 that is outside the standard fare: Paradoxes and Infinity
[*]We are expanding our in-person AoPS Academy locations - are you looking for a strong community of problem solvers, exemplary instruction, and math and language arts options? Look to see if we have a location near you and enroll in summer camps or academic year classes today! New locations include campuses in California, Georgia, New York, Illinois, and Oregon and more coming soon![/list]

MOP (Math Olympiad Summer Program) just ended and the IMO (International Mathematical Olympiad) is right around the corner! This year’s IMO will be held in Australia, July 10th - 20th. Congratulations to all the MOP students for reaching this incredible level and best of luck to all selected to represent their countries at this year’s IMO! Did you know that, in the last 10 years, 59 USA International Math Olympiad team members have medaled and have taken over 360 AoPS Online courses. Take advantage of our Worldwide Online Olympiad Training (WOOT) courses
and train with the best! Please note that early bird pricing ends August 19th!
Are you tired of the heat and thinking about Fall? You can plan your Fall schedule now with classes at either AoPS Online, AoPS Academy Virtual Campus, or one of our AoPS Academies around the US.

Our full course list for upcoming classes is below:
All classes start 7:30pm ET/4:30pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Sunday, Oct 19 - Jan 25
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Sat & Sun, Sep 13 - Sep 14 (1:00 - 4:00 PM PT/4:00 - 7:00 PM ET)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Wednesday, Sep 24 - Dec 17

Precalculus
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Calculus
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT


Programming

Introduction to Programming with Python
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26
0 replies
jwelsh
Jul 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Integer-Valued FE comes again
lminsl   213
N 3 minutes ago by Fly_into_the_sky
Source: IMO 2019 Problem 1
Let $\mathbb{Z}$ be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers $a$ and $b$, $$f(2a)+2f(b)=f(f(a+b)).$$Proposed by Liam Baker, South Africa
213 replies
lminsl
Jul 16, 2019
Fly_into_the_sky
3 minutes ago
Bonza functions
KevinYang2.71   60
N 7 minutes ago by Baimukh
Source: 2025 IMO P3
Let $\mathbb{N}$ denote the set of positive integers. A function $f\colon\mathbb{N}\to\mathbb{N}$ is said to be bonza if
\[
f(a)~~\text{divides}~~b^a-f(b)^{f(a)}
\]for all positive integers $a$ and $b$.

Determine the smallest real constant $c$ such that $f(n)\leqslant cn$ for all bonza functions $f$ and all positive integers $n$.

Proposed by Lorenzo Sarria, Colombia
60 replies
KevinYang2.71
Jul 15, 2025
Baimukh
7 minutes ago
Number of n that p|a^n+b^n+c^n
Inequality.   2
N 14 minutes ago by AleMM
$p,q$ are primes such that $p=2q+1$. $a,b,c$ are integers and $p\nmid abc$. Prove that: the number of positive integers $n<p$ satisfying $p\mid a^n+b^n+c^n$ is less than $1+\sqrt{2p}$.
2 replies
Inequality.
Apr 14, 2022
AleMM
14 minutes ago
The Democratic Republic Of Germany 1
orl   19
N 33 minutes ago by Just1
Source: IMO LongList 1959-1966 Problem 2
Given $n$ positive numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ such that $a_{1}\cdot a_{2}\cdot ...\cdot a_{n}=1.$ Prove \[ \left( 1+a_{1}\right) \left( 1+a_{2}\right) ...\left(1+a_{n}\right) \geq 2^{n}.\]
19 replies
orl
Sep 1, 2004
Just1
33 minutes ago
inequality, combinatorics
Ducksohappi   0
36 minutes ago
Let $x_i, i =1,2,...,n$ be non-negative integers such that:
$\sum_{i=1}^n x_i=k$. find the minimum value of $T=\sum_{i=1}^n \binom{x_i}{7}$
(assume that $\binom{a}{b}=0$ if $a<b$)
0 replies
Ducksohappi
36 minutes ago
0 replies
Chinese remainder theorem problems with "lifting"
plaurent   0
an hour ago
Hello,

I'm looking for Chinese remainder theorem problems using what Evan Chen calls "lifting": using the
"if $x\equiv k \pmod{m_i}$, then $x\equiv k\pmod M$"
form of the theorem to obtain size results.

Ideally, problems would be of difficulty N1/N2 or less.
0 replies
plaurent
an hour ago
0 replies
semicircle and lines
micliva   29
N an hour ago by Turtwig113
Source: All-Russian olympiad 1995, Grade 10, Second Day, Problem 6
Let be given a semicircle with diameter $AB$ and center $O$, and a line intersecting the semicircle at $C$ and $D$ and the line $AB$ at $M$ ($MB < MA$, $MD < MC$). The circumcircles of the triangles $AOC$ and $DOB$ meet again at $L$. Prove that $\angle MKO$ is right.
L. Kuptsov
29 replies
micliva
Oct 20, 2013
Turtwig113
an hour ago
Greatest algebra ever
EpicBird08   15
N an hour ago by player-019
Source: ISL 2024/A2
Let $n$ be a positive integer. Find the minimum possible value of
\[
S = 2^0 x_0^2 + 2^1 x_1^2 + \dots + 2^n x_n^2,
\]where $x_0, x_1, \dots, x_n$ are nonnegative integers such that $x_0 + x_1 + \dots + x_n = n$.
15 replies
EpicBird08
Jul 16, 2025
player-019
an hour ago
Nondegenerate triangle game theory
MathSaiyan   1
N 2 hours ago by NTguy
Source: pOMA 2024/6
Given a positive integer $n\ge 3$, Arándano and Banana play a game. Initially, numbers $1,2,3,\dots,n$ are written on the blackboard. Alternatingly and starting with Arándano, the players erase numbers from the board one at a time, until exactly three numbers remain on the board. Banana wins the game if the last three numbers on the board are the sides of a nondegenerate triangle, and Arándano wins otherwise.
Determine, in terms of $n$, who has a winning strategy.
1 reply
MathSaiyan
Nov 14, 2024
NTguy
2 hours ago
Interesting inequality
sqing   1
N 2 hours ago by SunnyEvan
Source: Own
Let $ a,b\geq 0,a^2+b^2=1. $ Prove that$$ 6ab+\max\{a,b\}\leq \frac{5\sqrt 5}{3} $$
1 reply
sqing
4 hours ago
SunnyEvan
2 hours ago
Find all real functions withf(x^2 + yf(z)) = xf(x) + zf(y)
Rushil   35
N 2 hours ago by Royal_mhyasd
Source: INMO 2005 Problem 6
Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that \[ f(x^2 + yf(z)) = xf(x) + zf(y) , \] for all $x, y, z \in \mathbb{R}$.
35 replies
Rushil
Aug 23, 2005
Royal_mhyasd
2 hours ago
Finding quadratic numbers with prime numbers
Ro.Is.Te.   2
N 2 hours ago by Pal702004
Suppose p and q are prime numbers, with $p>q$ so that $p^2+pq+q^2$ is a quadratic number. The amount of sets of $(p,q)$ that satisfy, are?

Sorry for the bad translation.... I'm in a hurry
2 replies
Ro.Is.Te.
6 hours ago
Pal702004
2 hours ago
A bissector
jayme   4
N 3 hours ago by endless_abyss
Source: own?
Dear Mathlinkers,

1. 1, 2 deux secant circles
2. M, N the centers of 1, 2
3. A, B the points of intersection of 1 and 2
3. C, D the points of intersection of MN with 1, 2 so that C, M, N, C are collinear in this order
4. 0 the circumcircle of the triangle ABC
5. Ta the tangent to 0 at A
6. X, Y the second points of intersection of Ta wrt 1, 2.

Question : BA is the inner B-bissector of the triangle XBY.

Sincerely
Jean-Louis
4 replies
jayme
Yesterday at 11:53 AM
endless_abyss
3 hours ago
BMO Shortlist 2017, A2
dangerousliri   5
N 3 hours ago by driesmertenss
Consider the sequence of rational numbers defined by $x_1=\frac{4}{3}$ and $x_{n+1}=\frac{x_n^2}{x_n^2-x_n+1}$ , $n\geq 1$.
Show that the numerator of the lowest term expression of each sum $\sum_{k=1}^{n}x_k$ is a perfect square.

Proposed by Dorlir Ahmeti, Albania
5 replies
dangerousliri
May 11, 2018
driesmertenss
3 hours ago
Polyline with increasing links
NO_SQUARES   2
N Jul 4, 2025 by Lcb2009
Source: 239 MO 2025 10-11 p1
There are $100$ points on the plane, all pairwise distances between which are different. Is there always a polyline with vertices at these points, passing through each point once, in which the link lengths increase monotonously?
2 replies
NO_SQUARES
May 5, 2025
Lcb2009
Jul 4, 2025
Polyline with increasing links
G H J
G H BBookmark kLocked kLocked NReply
Source: 239 MO 2025 10-11 p1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NO_SQUARES
1150 posts
#1
Y by
There are $100$ points on the plane, all pairwise distances between which are different. Is there always a polyline with vertices at these points, passing through each point once, in which the link lengths increase monotonously?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Noirshade
1 post
#2
Y by
No. There is not always a polyline through 100 points with monotonically increasing edge lengths
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Lcb2009
1 post
#3
Y by
I don’t know if it’s right:
Just to find the two vertexes, which is the least distance of them.
And let the second least one doesn’t have vertexes within them.
Z K Y
N Quick Reply
G
H
=
a