Geometry

by Lukariman, May 7, 2025, 4:02 PM

Given acute triangle ABC ,AB=b,AC=c . M is a variable point on side AB. The circle circumscribing triangle BCM intersects AC at N.

a)Let I be the center of the circle circumscribing triangle AMN. Prove that I always lies on a fixed line.

b)Let J be the center of the circle circumscribing triangle MBC. Prove that line segment IJ has a constant length.
This post has been edited 2 times. Last edited by Lukariman, Yesterday at 4:24 PM

Geometry

by Lukariman, May 6, 2025, 12:43 PM

Given circle (O) and point P outside (O). From P draw tangents PA and PB to (O) with contact points A, B. On the opposite ray of ray BP, take point M. The circle circumscribing triangle APM intersects (O) at the second point D. Let H be the projection of B on AM. Prove that $\angle HDM$ = 2∠AMP.
Attachments:
This post has been edited 2 times. Last edited by Lukariman, Yesterday at 6:47 AM

Tangent to two circles

by Mamadi, May 2, 2025, 7:01 AM

Two circles \( w_1 \) and \( w_2 \) intersect each other at \( M \) and \( N \). The common tangent to two circles nearer to \( M \) touch \( w_1 \) and \( w_2 \) at \( A \) and \( B \) respectively. Let \( C \) and \( D \) be the reflection of \( A \) and \( B \) respectively with respect to \( M \). The circumcircle of the triangle \( DCM \) intersect circles \( w_1 \) and \( w_2 \) respectively at points \( E \) and \( F \) (both distinct from \( M \)). Show that the line \( EF \) is the second tangent to \( w_1 \) and \( w_2 \).

Isosceles Triangle Geo

by oVlad, Apr 12, 2025, 9:38 AM

Consider the isosceles triangle $ABC$ with $\angle A>90^\circ$ and the circle $\omega$ of radius $AC$ centered at $A.$ Let $M$ be the midpoint of $AC.$ The line $BM$ intersects $\omega$ a second time at $D.$ Let $E$ be a point on $\omega$ such that $BE\perp AC.$ Let $N$ be the intersection of $DE$ and $AC.$ Prove that $AN=2\cdot AB.$

Kingdom of Anisotropy

by v_Enhance, Jul 12, 2022, 1:41 PM

The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a path from $X$ to $Y$ is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called diverse if no road belongs to two or more paths in the collection.

Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$.

Proposed by Warut Suksompong, Thailand
This post has been edited 1 time. Last edited by v_Enhance, Jul 12, 2022, 1:59 PM
Reason: add authorship

Line passes through fixed point, as point varies

by Jalil_Huseynov, May 17, 2022, 6:48 PM

Let $ABC$ be a right triangle with $\angle B=90^{\circ}$. Point $D$ lies on the line $CB$ such that $B$ is between $D$ and $C$. Let $E$ be the midpoint of $AD$ and let $F$ be the seconf intersection point of the circumcircle of $\triangle ACD$ and the circumcircle of $\triangle BDE$. Prove that as $D$ varies, the line $EF$ passes through a fixed point.

Deduction card battle

by anantmudgal09, Mar 7, 2021, 10:32 AM

A Magician and a Detective play a game. The Magician lays down cards numbered from $1$ to $52$ face-down on a table. On each move, the Detective can point to two cards and inquire if the numbers on them are consecutive. The Magician replies truthfully. After a finite number of moves, the Detective points to two cards. She wins if the numbers on these two cards are consecutive, and loses otherwise.

Prove that the Detective can guarantee a win if and only if she is allowed to ask at least $50$ questions.

Proposed by Anant Mudgal

IMO 2018 Problem 5

by orthocentre, Jul 10, 2018, 11:19 AM

Let $a_1$, $a_2$, $\ldots$ be an infinite sequence of positive integers. Suppose that there is an integer $N > 1$ such that, for each $n \geq N$, the number
$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$is an integer. Prove that there is a positive integer $M$ such that $a_m = a_{m+1}$ for all $m \geq M$.

Proposed by Bayarmagnai Gombodorj, Mongolia
This post has been edited 3 times. Last edited by djmathman, Jun 16, 2020, 4:03 AM
Reason: problem author

perpendicularity involving ex and incenter

by Erken, Dec 24, 2008, 2:56 PM

Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.

q(x) to be the product of all primes less than p(x)

by orl, Aug 10, 2008, 5:19 PM

For an integer $x \geq 1$, let $p(x)$ be the least prime that does not divide $x$, and define $q(x)$ to be the product of all primes less than $p(x)$. In particular, $p(1) = 2.$ For $x$ having $p(x) = 2$, define $q(x) = 1$. Consider the sequence $x_0, x_1, x_2, \ldots$ defined by $x_0 = 1$ and \[ x_{n+1} = \frac{x_n p(x_n)}{q(x_n)} \] for $n \geq 0$. Find all $n$ such that $x_n = 1995$.
This post has been edited 1 time. Last edited by v_Enhance, Apr 5, 2015, 12:49 PM
Reason: tex cleanup

Fun with math!

avatar

aoum
Archives
+ March 2025
Shouts
Submit
  • I have initiated a mass removal of shouts related to AI-related allegations.

    by aoum, May 4, 2025, 8:03 PM

  • krish6_9 has been permanently banned.

    by aoum, May 3, 2025, 3:03 PM

  • If you leave a comment on one of my posts—especially older ones—I might not see it right away.

    by aoum, May 2, 2025, 11:55 PM

  • 100 posts!

    by aoum, Apr 21, 2025, 9:11 PM

  • Very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very cool (The maximum of the factorial machine is 7228!

    by Coin1, Apr 21, 2025, 4:44 AM

  • cool blog and good content but it looks eerily similar to chatgpt

    by SirAppel, Apr 17, 2025, 1:28 AM

  • 1,000 views!

    by aoum, Apr 17, 2025, 12:25 AM

  • Excellent blog. Contribute?

    by zhenghua, Apr 10, 2025, 1:27 AM

  • Are you asking to contribute or to be notified whenever a post is published?

    by aoum, Apr 10, 2025, 12:20 AM

  • nice blog! love the dedication c:
    can i have contrib to be notified whenever you post?

    by akliu, Apr 10, 2025, 12:08 AM

  • WOAH I JUST CAME HERE, CSS IS CRAZY

    by HacheB2031, Apr 8, 2025, 5:05 AM

  • Thanks! I'm happy to hear that! How is the new CSS? If you don't like it, I can go back.

    by aoum, Apr 8, 2025, 12:42 AM

  • This is such a cool blog! Just a suggestion, but I feel like it would look a bit better if the entries were wider. They're really skinny right now, which makes the posts seem a lot longer.

    by Catcumber, Apr 4, 2025, 11:16 PM

  • The first few posts for April are out!

    by aoum, Apr 1, 2025, 11:51 PM

  • Sure! I understand that it would be quite a bit to take in.

    by aoum, Apr 1, 2025, 11:08 PM

61 shouts
Contributors
Tags
Problem of the Day
Fractals
geometry
combinatorics
Millennium Prize Problems
poll
Riemann Hypothesis
calculus
Collatz Conjecture
Factorials
graph theory
infinity
pi
Sir Issac Newton
AMC
Bernoulli numbers
Chudnovsky Algorithm
Exponents
Gauss-Legendre Algorithm
Goldbach Conjecture
Koch snowflake
MAA
Mandelbrot Set
Mastering AMC 1012
MATHCOUNTS
Matroids
Nilakantha Series
number theory
P vs NP Problem
P-adic Analysis
paradoxes
Polynomials
probability
Ramsey Theory
1d
2D
3d
4d
algebra
Algorithmic Applications
AMC 10
AMC 8
angle bisector theorem
Angle trisection
Applications in Various Fields
Arc Sine Formula
Archimedes Method
Banach-Tarski Paradox
Basel Problem
Basic Reproduction Number
Bayes Theorem
Bell Curve
Bertrand s Box Paradox
binomial theorem
Birthday Attack
Birthday Problem
buffon s needle
Cantor s Infinite Sets
cardinality
catalan numbers
Chicken McNugget Theorem
Circumference
Coin Rotation Paradox
computer science
conditional probability
conic sections
Conjectures
Cryptography
Cyclic Numbers
Cyclic Sieving Phenomenon
Different Sizes of Infinity
Diophantine Equations
Diophantinve Approximation
Dirichlets Approximation
Diseases
Double Factorials
Drake Equation
epidemiology
euclidean geometry
Euler Characteristic
Euler s Formula for Polyhedra
Euler s Identity
Euler s totient function
Euler-Lagrange Equation
Fermat s Factoring Method
fermat s last theorem
Fibonacci sequence
finite
First Dimenstion
four color theorem
Fourth dimension
Fractals and Chaos Theory
free books
Gamma function
Golden Ratio
Graham s Number
Graph Minor Theorem
gravity
Greedoids
Gregory-Liebniz Series
Hailstone Problem
Heron s Formula
Higher Dimensions
Hilbert s Hotel
Hilberts Hotel
Hodge Conjecture
ideal gas law
Inclusion-exclusion
infinite
Irrational numbers
Kruskals Tree Theorem
Laplace s Equation
Law of Force and Acceleration
legendre s theorem
Leibniz Formula
logarithms
logic
Mastering AMC 8
Matrices
Menger Sponge
Minkowskis Theorem
modular arithmetic
Multinomial Theorem
Multiples of 24
National Science Bowl
Newton s First Law of Motion
Newton s Second Law of Motion
Newton s Third Law of Motion
normal distribution
Parabolas
Paradox
Penrose Tilings
physical chemistry
pie
pigeonhole principle
platonic solids
Price s Equation
prime numbers
primes
Ptolemys Theorem
Pythagorean Theorem
Python
Ramsey s Theorem
recursion
Reproduction Rate of Diseases
Riemann Zeta Function
Second Dimension
Sequences
Sequences of Binomial Type
Sets
Sierpinski Triangle
Sierpiski Carpet
Sierpiski Triangle
Simon s Factoring Trick
statistics
Sums of Like Powers
Taylor series
The Birthday Problem
The Book of Formulas
The HalesJewett Theorem
The Law of Action and Reaction
The Law of Inertia
The Lost Boarding Pass Problem
thermodynamics
Third Dimension
Topological Insights
triangle inequality
trigonometry
twin prime conjecture
Umbral Calculus
Van der Waerdens Theorem
venn diagram
Wallis Product
Zeno s Paradoxes
About Owner
  • Posts: 0
  • Joined: Nov 2, 2024
Blog Stats
  • Blog created: Mar 1, 2025
  • Total entries: 112
  • Total visits: 1326
  • Total comments: 39
Search Blog
a