AoPS Community

AMC 12/AHSME 1962

www.artofproblemsolving.com/community/c4826
by Maxima, rrusczyk

1 The expression $\frac{1^{4 y-1}}{5^{-1}+3^{-1}}$ is equal to:
(A) $\frac{4 y-1}{8}$
(B) 8
(C) $\frac{15}{2}$
(D) $\frac{15}{8}$
(E) $\frac{1}{8}$

2 The expression $\sqrt{\frac{4}{3}}-\sqrt{\frac{3}{4}}$ is equal to:
(A) $\frac{\sqrt{3}}{6}$
(B) $\frac{-\sqrt{3}}{6}$
(C) $\frac{\sqrt{-3}}{6}$
(D) $\frac{5 \sqrt{3}}{6}$
(E) 1

3 The first three terms of an arithmetic progression are $x-1, x+1,2 x+3$, in the order shown. The value of x is:
(A) -2
(B) 0
(C) 2
(D) 4
(E) undetermined

4 If $8^{x}=32$, then x equals:
(A) 4
(B) $\frac{5}{3}$
(C) $\frac{3}{2}$
(D) $\frac{3}{5}$
(E) $\frac{1}{4}$

5 If the radius of a circle is increased by 1 unit, the ratio of the new circumference to the new diameter is:
(A) $\pi+2$
(B) $\frac{2 \pi+1}{2}$
(C) π
(D) $\frac{2 \pi-1}{2}$
(E) $\pi-2$

6 A square and an equilateral triangle have equal perimeters. The area of the triangle is $9 \sqrt{3}$ square inches. Expressed in inches the diagonal of the square is:
(A) $\frac{9}{2}$
(B) $2 \sqrt{5}$
(C) $4 \sqrt{2}$
(D) $\frac{9 \sqrt{2}}{2}$
(E) none of these

7 Let the bisectors of the exterior angles at B and C of triangle $A B C$ meet at D. Then, if all measurements are in degrees, angle $B D C$ equals:
(A) $\frac{1}{2}(90-A)$
(B) $90-A$
(C) $\frac{1}{2}(180-A)$
(D) $180-A$
(E) $180-2 A$

8 Given the set of n numbers; $n>1$, of which one is $1-\frac{1}{n}$ and all the others are 1 . The arithmetic mean of the n numbers is:
(A) 1
(B) $n-\frac{1}{n}$
(C) $n-\frac{1}{n^{2}}$
(D) $1-\frac{1}{n^{2}}$
(E) $1-\frac{1}{n}-\frac{1}{n^{2}}$

9 When $x^{9}-x$ is factored as completely as possible into polynomials and monomials with integral coefficients, the number of factors is:
(A) more than 5
(B) 5
(C) 4
(D) 3
(E) 2

10 A man drives 150 miles to the seashore in 3 hours and 20 minutes. He returns from the shore to the starting point in 4 hours and 10 minutes. Let r be the average rate for the entire trip. Then
the average rate for the trip going exceeds r in miles per hour, by:
(A) 5
(B) $4 \frac{1}{2}$
(C) 4
(D) 2
(E) 1

11 The difference between the larger root and the smaller root of $x^{2}-p x+\left(p^{2}-1\right) / 4=0$ is:
(A) 0
(B) 1
(C) 2
(D) p
(E) $p+1$

12 When $\left(1-\frac{1}{a}\right)^{6}$ is expanded the sum of the last three coefficients is:
(A) 22
(B) 11
(C) 10
(D) -10
(E) -11
$13 \quad R$ varies directly as S and inverse as T. When $R=\frac{4}{3}$ and $T=\frac{9}{14}, S=\frac{3}{7}$. Find S when $R=\sqrt{48}$ and $T=\sqrt{75}$.
(A) 28
(B) 30
(C) 40
(D) 42
(E) 60

14 Let s be the limiting sum of the geometric series $4-\frac{8}{3}+\frac{16}{9}-\ldots$, as the number of terms increases without bound. Then s equals:
(A) a number between 0 and 1
(B) 2.4
(C) 2.5
(D) 3.6
(E) 12

15 Given triangle $A B C$ with base $A B$ fixed in length and position. As the vertex C moves on a straight line, the intersection point of the three medians moves on:
(A) a circle
(B) a parabola
(C) an ellipse
(D) a straight line
(E) a curve here not listed

16 Given rectangle R_{1} with one side 2 inches and area 12 square inches. Rectangle R_{2} with diagonal 15 inches is similar to R_{1}. Expressed in square inches the area of R_{2} is:
(A) $\frac{9}{2}$
(B) 36
(C) $\frac{135}{2}$
(D) $9 \sqrt{10}$
(E) $\frac{27 \sqrt{10}}{4}$

17 If $a=\log _{8} 225$ and $b=\log _{2} 15$, then a, in terms of b, is:
(A) $\frac{b}{2}$
(B) $\frac{2 b}{3}$
(C) b
(D) $\frac{3 b}{2}$
(E) $2 b$

18 A regular dodecagon (12 sides) is inscribed in a circle with radius r inches. The area of the dodecagon, in square inches, is:
(A) $3 r^{2}$
(B) $2 r^{2}$
(C) $\frac{3 r^{2} \sqrt{3}}{4}$
(D) $r^{2} \sqrt{3}$
(E) $3 r^{2} \sqrt{3}$

19 If the parabola $y=a x^{2}+b x+c$ passes through the points $(-1,12),(0,5)$, and $(2,-3)$, the value of $a+b+c$ is:
(A) -4
(B) -2
(C) 0
(D) 1
(E) 2

20 The angles of a pentagon are in arithmetic progression. One of the angles in degrees, must be:
(A) 108
(B) 90
(C) 72
(D) 54
(E) 36

21 It is given that one root of $2 x^{2}+r x+s=0$, with r and s real numbers, is $3+2 i(i=\sqrt{-1})$. The value of s is:
(A) undetermined
(B) 5
(C) 6
(D) -13
(E) 26

22 The number 121_{b}, written in the integral base b, is the square of an integer, for
(A) $b=10$, only
(B) $b=10$ and $b=5$, only
(C) $2 \leq b \leq 10$
(D) $b>2$
(E) no value of b

23 In triangle $A B C, C D$ is the altitude to $A B$ and $A E$ is the altitude to $B C$. If the lengths of $A B, C D$, and $A E$ are known, the length of $D B$ is:
(A) not determined by the information given
(B) determined only if A is an acute angle
(C) determined only if B is an acute angle
(D) determined only in ABC is an acute triangle
(E) none of these is correct

24 Three machines P, Q, and R , working together, can do a job in x hours. When working alone, P needs an additional 6 hours to do the job; Q , one additional hour; and R, x additional hours. The value of x is:
(A) $\frac{2}{3}$
(B) $\frac{11}{12}$
(C) $\frac{3}{2}$
(D) 2
(E) 3

25 Given square $A B C D$ with side 8 feet. A circle is drawn through vertices A and D and tangent to side $B C$. The radius of the circle, in feet, is:
(A) 4
(B) $4 \sqrt{2}$
(C) 5
(D) $5 \sqrt{2}$
(E) 6

26 For any real value of x the maximum value of $8 x-3 x^{2}$ is:
(A) 0
(B) $\frac{8}{3}$
(C) 4
(D) 5
(E) $\frac{16}{3}$

27 Let $a @ b$ represent the operation on two numbers, a and b, which selects the larger of the two numbers, with $a @ a=a$. Let $a!b$ represent the operator which selects the smaller of the two numbers, with $a!a=a$. Which of the following three rules is (are) correct?
(1) $a @ b=b @ a$
(2) $a @(b @ c)=(a @ b) @ c$
(3) $a!(b @ c)=(a!b) @(a!c)$
(A) (1) only
(B) (2) only
(C) (1) and (2) only
(D) (1) and (3) only
(E) all three

28 The set of x-values satisfying the equation $x^{\log _{10} x}=\frac{x^{3}}{100}$ consists of:
(A) $\frac{1}{10}$
(B) 10, only
(C) 100, only
(D) 10 or 100, only
(E) more than two real numbers.

29 Which of the following sets of x-values satisfy the inequality $2 x^{2}+x<6$?
(A) $-2<x<\frac{3}{2}$
(B) $x>\frac{3}{2}$ or $x<-2$
(C) $x<\frac{3}{2}$
(D) $\frac{3}{2}<x<2$
(E) $x<-2$

30 Consider the statements:
(1) p and q are both true
(2) p is true and q is false
(3) p is false and q is true
(4) p is false and

How many of these imply the negative of the statement "p and q are both true?"
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

AoPS Community

31 The ratio of the interior angles of two regular polygons with sides of unit length is $3: 2$. How many such pairs are there?
(A) 1
(B) 2
(C) 3
(D) 4
(E) infinitely many

32 If $x_{k+1}=x_{k}+\frac{1}{2}$ for $k=1,2, \ldots, n-1$ and $x_{1}=1$, find $x_{1}+x_{2}+\cdots+x_{n}$.
(A) $\frac{n+1}{2}$
(B) $\frac{n+3}{2}$
(C) $\frac{n^{2}-1}{2}$
(D) $\frac{n^{2}+n}{4}$
(E) $\frac{n^{2}+3 n}{4}$

33 The set of x-values satisfying the inequality $2 \leq|x-1| \leq 5$ is:
(A) $-4 \leq x \leq-1$ or $3 \leq x \leq 6$
(B) $3 \leq x \leq 6$ or $-6 \leq x \leq-3$
(C) $x \leq-1$ or $x \geq$
3
(D) $-1 \leq x \leq 3$
(E) $-4 \leq x \leq 6$

34 For what real values of K does $x=K^{2}(x-1)(x-2)$ have real roots?
(A) none
(B) $-2<K<1$
(C) $-2 \sqrt{2}<K<2 \sqrt{2}$
(D) $K>1$ or $K<-2$
(E) all

35 A man on his way to dinner short after $6: 00$ p.m. observes that the hands of his watch form an angle of 110°. Returning before $7: 00 \mathrm{p} . \mathrm{m}$. he notices that again the hands of his watch form an angle of 110°. The number of minutes that he has been away is:
(A) $36 \frac{2}{3}$
(B) 40
(C) 42
(D) 42.4
(E) 45

36 If both x and y are both integers, how many pairs of solutions are there of the equation $x-$ 8) $(x-10)=2^{y}$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) more than 3
$37 \quad A B C D$ is a square with side of unit length. Points E and F are taken respectively on sides $A B$ and $A D$ so that $A E=A F$ and the quadrilateral $C D F E$ has maximum area. In square units this maximum area is:
(A) $\frac{1}{2}$
(B) $\frac{9}{16}$
(C) $\frac{19}{32}$
(D) $\frac{5}{8}$
(E) $\frac{2}{3}$

38 The population of Nosuch Junction at one time was a perfect square. Later, with an increase of 100, the population was one more than a perfect square. Now, with an additional increase of 100 , the population is again a perfect square.

The original population is a multiple of:
(A) 3
(B) 7
(C) 9
(D) 11
(E) 17

39 Two medians of a triangle with unequal sides are 3 inches and 6 inches. Its area is $3 \sqrt{15}$ square inches. The length of the third median in inches, is:
(A) 4
(B) $3 \sqrt{3}$
(C) $3 \sqrt{6}$
(D) $6 \sqrt{3}$
(E) $6 \sqrt{6}$

40 The limiting sum of the infinite series, $\frac{1}{10}+\frac{2}{10^{2}}+\frac{3}{10^{3}}+\ldots$ whose nth term is $\frac{n}{10^{n}}$ is:
(A) $\frac{1}{9}$
(B) $\frac{10}{81}$
(C) $\frac{1}{8}$
(D) $\frac{17}{72}$
(E) larger than any finite quantity

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

