Art of Problem Solving

AoPS Community

AMC 12/AHSME 1963

www.artofproblemsolving.com/community/c4827
by TheMaskedMagician, rrusczyk

1 Which one of the following points is not on the graph of $y=\frac{x}{x+1}$?
(A) $(0,0)$
(B) $\left(-\frac{1}{2},-1\right)$
(C) $\left(\frac{1}{2}, \frac{1}{3}\right)$
(D) $(-1,1)$
(E) $(-2,2)$

2 Let $n=x-y^{x-y}$. Find n when $x=2$ and $y=-2$.
(A) -14
(B) 0
(C) 1
(D) 18
(E) 256

3 If the reciprocal of $x+1$ is $x-1$, then x equals:
(A) 0
(B) 1
(C) -1
(D) ± 1
(E) none of these

4 For what value(s) of k does the pair of equations $y=x^{2}$ and $y=3 x+k$ have two identical solutions?
(A) $\frac{4}{9}$
(B) $-\frac{4}{9}$
(C) $\frac{9}{4}$
(D) $-\frac{9}{4}$
(E) $\pm \frac{9}{4}$

5 If x and $\log _{10} x$ are real numbers and $\log _{10} x<0$, then:
(A) $x<0$
(B) $-1<x<1$
(C) $0<x \leq 1$
(D) $-1<x<0$
(E) $0<x<1$

6 Triangle $B A D$ is right-angled at B. On $A D$ there is a point C for which $A C=C D$ and $A B=B C$. The magnitude of angle $D A B$, in degrees, is:
(A) $67 \frac{1}{2}$
(B) 60
(C) 45
(D) 30
(E) $22 \frac{1}{2}$

7 Given the four equations:
(1) $3 y-2 x=12$
(2) $-2 x-3 y=10$
(3) $3 y+2 x=12$
(4) $2 y+3 x=10$

The pair representing the perpendicular lines is:
(A) (1) and (4)
(B) (1) and (3)
(C) (1) and (2)
(D) (2) and (4)
(E) (2) and (3)

8 The smallest positive integer x for which $1260 x=N^{3}$, where N is an integer, is:
(A) 1050
(B) 1260
(C) 1260^{2}
(D) 7350
(E) 44100

9 In the expansion of $\left(a-\frac{1}{\sqrt{a}}\right)^{7}$ the coefficient of $a^{-\frac{1}{2}}$ is:
(A) -7
(B) 7
(C) -21
(D) 21
(E) 35

10 Point P is taken interior to a square with side-length a and such that is it equally distant from two consecutive vertices and from the side opposite these vertices. If d represents the common distance, then d equals:
(A) $\frac{3 a}{5}$
(B) $\frac{5 a}{8}$
(C) $\frac{3 a}{8}$
(D) $\frac{a \sqrt{2}}{2}$
(E) $\frac{a}{2}$

11 The arithmetic mean of a set of 50 numbers is 38 . If two numbers of the set, namely 45 and 55 , are discarded, the arithmetic mean of the remaining set of numbers is:
(A) 38.5
(B) 37.5
(C) 37
(D) 36.5
(E) 36

12 Three vertices of parallelogram $P Q R S$ are $P(-3,-2), Q(1,-5), R(9,1)$ with P and R diagonally opposite. The sum of the coordinates of vertex S is:
(A) 13
(B) 12
(C) 11
(D) 10
(E) 9

13 If $2^{a}+2^{b}=3^{c}+3^{d}$, the number of integers a, b, c, d which can possibly be negative, is, at most:
(A) 4
(B) 3
(C) 2
(D) 1
(E) 0

14 Given the equations $x^{2}+k x+6=0$ and $x^{2}-k x+6=0$. If, when the roots of the equation are suitably listed, each root of the second equation is 5 more than the corresponding root of the first equation, then k equals:
(A) 5
(B) -5
(C) 7
(D) -7
(E) none of these

15 A circle is inscribed in an equilateral triangle, and a square is inscribed in the circle. The ratio of the area of the triangle to the area of the square is:
(A) $\sqrt{3}: 1$
(B) $\sqrt{3}: \sqrt{2}$
(C) $3 \sqrt{3}: 2$
(D) $3: \sqrt{2}$
(E) $3: 2 \sqrt{2}$

16 Three numbers a, b, c, none zero, form an arithmetic progression. Increasing a by 1 or increasing c by 2 results in a geometric progression. Then b equals:
(A) 16
(B) 14
(C) 12
(D) 10
(E) 8

17 The expression $\frac{\frac{a}{a+y}+\frac{y}{a-y}}{\frac{y}{a+y}-\frac{a}{a-y}}$, a real, $a \neq 0$, has the value -1 for:
(A) all but two real values of y
(B) only two real values of y
(C) all real values of y
(D) only one real value of y
(E) no real values of y

18 Chord $E F$ is the perpendicular bisector of chord $B C$, intersecting it in M. Between B and M point U is taken, and $E U$ extended meets the circle in A. Then, for any selection of U, as described, triangle $E U M$ is similar to triangle:

(A) $E F A$
(B) $E F C$
(C) $A B M$
(D) $A B U$
(E) $F M C$

19 In counting n colored balls, some red and some black, it was found that 49 of the first 50 counted were red. Thereafter, 7 out of every 8 counted were red. If, in all, 90% or more of the balls counted were red, the maximum value of n is:
(A) 225
(B) 210
(C) 200
(D) 180
(E) 175

20 Two men at points R and $S, 76$ miles apart, set out at the same time to walk towards each other. The man at R walks uniformly at the rate of $4 \frac{1}{2}$ miles per hour; the man at S walks at the constant rate of $3 \frac{1}{4}$ miles per hour for the first hour, at $3 \frac{3}{4}$ miles per hour for the second hour, and so on, in arithmetic progression. If the men meet x miles nearer R than S in an integral number of hours, then x is:
(A) 10
(B) 8
(C) 6
(D) 4
(E) 2

21 The expression $x^{2}-y^{2}-z^{2}+2 y z+x+y-z$ has:
(A) no linear factor with integer coeficients and integer exponents
(B) the factor $-x+y+z$
(C) the factor $x-y-z+1$
(D) the factor $x+y-z+1$
(E) the factor $x-y+z+1$

22 Acute-angled triangle $A B C$ is inscribed in a circle with center at O; $\overparen{A B}=120$ and $\widehat{B C}=72$. A point E is taken in minor arc $A C$ such that $O E$ is perpendicular to $A C$. Then the ratio of the magnitudes of angles $O B E$ and $B A C$ is:
(A) $\frac{5}{18}$
(B) $\frac{2}{9}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$
(E) $\frac{4}{9}$
$23 \quad A$ gives B as many cents as B has and C as many cents as C has. Similarly, B then gives A and C as many cents as each then has. C, similarly, then gives A and B as many cents as each then has. If each finally has 16 cents, with how many cents does A start?
(A) 24
(B) 26
(C) 28
(D) 30
(E) 32

24 Consider equations of the form $x^{2}+b x+c=0$. How many such equations have real roots and have coefficients b and c selected from the set of integers $\{1,2,3,4,5,6\}$?
(A) 20
(B) 19
(C) 18
(D) 17
(E) 16

25 Point F is taken in side $A D$ of square $A B C D$. At C a perpendicular is drawn to $C F$, meeting $A B$ extended at E. The area of $A B C D$ is 256 square inches and the area of triangle $C E F$ is 200 square inches. Then the number of inches in $B E$ is:

(A) 12
(B) 14
(C) 15
(D) 16
(E) 20

26 Form 1

Consider the statements:
(1) $p \wedge \sim q \wedge r$
(2) $\sim p \wedge \sim q \wedge r$
(3) $p \wedge \sim q \wedge \sim r$
(4) $\sim p \wedge q \wedge r$,
where p, q, and r are propositions. How many of these imply the truth of $(p \rightarrow q) \rightarrow r$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Form 2
Consider the statements (1) p and r are true and q is false (2) r is true and p and q are false (3) p is true and q and r are false (4) q and r are true and p is false. How many of these imply the truth of the statement
" r is implied by the statement that p implies q "?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

27 Six straight lines are drawn in a plane with no two parallel and no three concurrent. The number of regions into which they divide the plane is:
(A) 16
(B) 20
(C) 22
(D) 24
(E) 26

28 Given the equation $3 x^{2}-4 x+k=0$ with real roots. The value of k for which the product of the roots of the equation is a maximum is:
(A) $\frac{16}{9}$
(B) $\frac{16}{3}$
(C) $\frac{4}{9}$
(D) $\frac{4}{3}$
(E) $-\frac{4}{3}$

29 A particle projected vertically upward reaches, at the end of t seconds, an elevation of s feet where $s=160 t-16 t^{2}$. The highest elevation is:
(A) 800
(B) 640
(C) 400
(D) 320
(E) 160

30 Let

$$
F=\log \frac{1+x}{1-x}
$$

Find a new function G by replacing each x in F by

$$
\frac{3 x+x^{3}}{1+3 x^{2}}
$$

and simplify. The simplified expression G is equal to:
(A) $-F$
(B) F
(C) $3 F$
(D) F^{3}
(E) $F^{3}-F$

31 The number of solutions in positive integers of $2 x+3 y=763$ is:
(A) 255
(B) 254
(C) 128
(D) 127
(E) 0

32 The dimensions of a rectangle R are a and $b, a<b$. It is required to obtain a rectangle with dimensions x and $y, x<a, y<a$, so that its perimeter is one-third that of R, and its area is one-third that of R. The number of such (different) rectangles is:
(A) 0
(B) 1
(C) 2
(D) 4
(E) infinitely many

33 Given the line $y=\frac{3}{4} x+6$ and a line L parallel to the given line and 4 units from it. A possible equation for L is:
(A) $y=\frac{3}{4} x+1$
(B) $y=\frac{3}{4} x$
(C) $y=\frac{3}{4} x-\frac{2}{3}$
(D) $y=\frac{3}{4} x-1$
(E) $y=\frac{3}{4} x+2$

34 In triangle ABC , side $a=\sqrt{3}$, side $b=\sqrt{3}$, and side $c>3$. Let x be the largest number such that the magnitude, in degrees, of the angle opposite side c exceeds x. Then x equals:
(A) 150
(B) 120
(C) 105
(D) 90
(E) 60

35 The lengths of the sides of a triangle are integers, and its area is also an integer. One side is 21 and the perimeter is 48 . The shortest side is:
(A) 8
(B) 10
(C) 12
(D) 14
(E) 16

36 A person starting with 64 cents and making 6 bets, wins three times and loses three times, the wins and losses occurring in random order. The chance for a win is equal to the chance for a loss. If each wager is for half the money remaining at the time of the bet, then the final result is:
(A) a loss of 27
(B) a gain of 27
(C) a loss of 37
$\begin{array}{lll}\text { (D) neither a gain nor a loss } & \text { (E) a gain or a loss depending upon the order in which the wins and losse }\end{array}$
Note: Due to the lack of $\angle A T_{E}$ Xpackages, the numbers in the answer choices are in cents \bar{C}
37 Given points $P_{1}, P_{2}, \cdots, P_{7}$ on a straight line, in the order stated (not necessarily evenly spaced). Let P be an arbitrarily selected point on the line and let s be the sum of the undirected lengths

$$
P P_{1}, P P_{2}, \cdots, P P_{7}
$$

Then s is smallest if and only if the point P is:
(A) midway between P_{1} and P_{7}
(B) midway between P_{2} and P_{6}
(C) midway between P_{3} and P_{5}
(D) at P_{4}
(E) at P_{1}

38 Point F is taken on the extension of side $A D$ of parallelogram $A B C D . B F$ intersects diagonal $A C$ at E and side $D C$ at G. If $E F=32$ and $G F=24$, then $B E$ equals:

(A) 4
(B) 8
(C) 10
(D) 12
(E) 16

39 In triangle $A B C$ lines $C E$ and $A D$ are drawn so that

$$
\frac{C D}{D B}=\frac{3}{1} \text { and } \frac{A E}{E B}=\frac{3}{2} . \text { Let } r=\frac{C P}{P E}
$$

where P is the intersection point of $C E$ and $A D$. Then r equals:

(A) 3
(B) $\frac{3}{2}$
(C) 4
(D) 5
(E) $\frac{5}{2}$

40 If x is a number satisfying the equation $\sqrt[3]{x+9}-\sqrt[3]{x-9}=3$, then x^{2} is between:
(A) 55 and 65
(B) 65 and 75
(C) 75 and 85
(D) 85 and 95
(E) 95 and 105

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http: //maa. org).

