

AMC 12/AHSME 1963

www.artofproblemsolving.com/community/c4827 by TheMaskedMagician, rrusczyk

1	Which one of the following points is <u>not</u> on the graph of $y = \frac{x}{x+1}$?
	(A) $(0,0)$ (B) $\left(-\frac{1}{2},-1\right)$ (C) $\left(\frac{1}{2},\frac{1}{3}\right)$ (D) $(-1,1)$ (E) $(-2,2)$
2	Let $n = x - y^{x-y}$. Find n when $x = 2$ and $y = -2$.
	(A) -14 (B) 0 (C) 1 (D) 18 (E) 256
3	If the reciprocal of $x + 1$ is $x - 1$, then x equals:
	(A) 0 (B) 1 (C) -1 (D) ± 1 (E) none of these
4	For what value(s) of k does the pair of equations $y = x^2$ and $y = 3x + k$ have two identical solutions?
	(A) $\frac{4}{9}$ (B) $-\frac{4}{9}$ (C) $\frac{9}{4}$ (D) $-\frac{9}{4}$ (E) $\pm \frac{9}{4}$
5	If x and $\log_{10} x$ are real numbers and $\log_{10} x < 0$, then:
	(A) $x < 0$ (B) $-1 < x < 1$ (C) $0 < x \le 1$
	(D) $-1 < x < 0$ (E) $0 < x < 1$
6	Triangle BAD is right-angled at B . On AD there is a point C for which $AC = CD$ and $AB = BC$. The magnitude of angle DAB , in degrees, is:
	(A) $67\frac{1}{2}$ (B) 60 (C) 45 (D) 30 (E) $22\frac{1}{2}$
7	Given the four equations:
	(1) $3y - 2x = 12$ (2) $-2x - 3y = 10$ (3) $3y + 2x = 12$ (4) $2y + 3x = 10$
	The pair representing the perpendicular lines is:
	(A) (1) and (4) (B) (1) and (3) (C) (1) and (2) (D) (2) and (4) (E) (2) and (3)
8	The smallest positive integer x for which $1260x = N^3$, where N is an integer, is:
	(A) 1050 (B) 1260 (C) 1260^2 (D) 7350 (E) 44100

1963 AMC 12/AHSME

9	In the expansion of $\left(a-rac{1}{\sqrt{a}} ight)^7$ the coefficient of $a^{-rac{1}{2}}$ is:
	(A) -7 (B) 7 (C) -21 (D) 21 (E) 35
10	Point P is taken interior to a square with side-length a and such that is it equally distant from two consecutive vertices and from the side opposite these vertices. If d represents the common distance, then d equals:
	(A) $\frac{3a}{5}$ (B) $\frac{5a}{8}$ (C) $\frac{3a}{8}$ (D) $\frac{a\sqrt{2}}{2}$ (E) $\frac{a}{2}$
11	The arithmetic mean of a set of 50 numbers is 38 . If two numbers of the set, namely 45 and 55 , are discarded, the arithmetic mean of the remaining set of numbers is:
	(A) 38.5 (B) 37.5 (C) 37 (D) 36.5 (E) 36
12	Three vertices of parallelogram $PQRS$ are $P(-3, -2)$, $Q(1, -5)$, $R(9, 1)$ with P and R diagonally opposite. The sum of the coordinates of vertex S is:
	(A) 13 (B) 12 (C) 11 (D) 10 (E) 9
13	If $2^a + 2^b = 3^c + 3^d$, the number of integers a, b, c, d which can possibly be negative, is, at most: (A) 4 (B) 3 (C) 2 (D) 1 (E) 0
14	Given the equations $x^2 + kx + 6 = 0$ and $x^2 - kx + 6 = 0$. If, when the roots of the equation are suitably listed, each root of the second equation is 5 more than the corresponding root of the first equation, then k equals:
	(A) 5 (B) -5 (C) 7 (D) -7 (E) none of these
15	A circle is inscribed in an equilateral triangle, and a square is inscribed in the circle. The ratio of the area of the area of the square is:
	(A) $\sqrt{3}: 1$ (B) $\sqrt{3}: \sqrt{2}$ (C) $3\sqrt{3}: 2$ (D) $3: \sqrt{2}$ (E) $3: 2\sqrt{2}$
16	Three numbers a, b, c , none zero, form an arithmetic progression. Increasing a by 1 or increasing c by 2 results in a geometric progression. Then b equals:
	(A) 16 (B) 14 (C) 12 (D) 10 (E) 8
17	The expression $rac{a}{rac{a+y}{y}+rac{y}{a-y}}{rac{y}{a+y}-rac{a}{a-y}}$, a real, $a eq 0$, has the value -1 for:

AoPS Community 1963 AMC 12/AHSME (A) all but two real values of y (B) only two real values of y (C) all real values of y (D) only one real value of y (E) no real values of y

18 Chord EF is the perpendicular bisector of chord BC, intersecting it in M. Between B and M point U is taken, and EU extended meets the circle in A. Then, for any selection of U, as described, triangle EUM is similar to triangle:

(A) <i>EFA</i>	(B) <i>EFC</i>	(C) <i>ABM</i>	(D) <i>ABU</i>	(E) <i>FMC</i>

19 In counting *n* colored balls, some red and some black, it was found that 49 of the first 50 counted were red. Thereafter, 7 out of every 8 counted were red. If, in all, 90% or more of the balls counted were red, the maximum value of *n* is:

(A) 225 (B) 210 (C) 200 (D) 180 (E) 175

20 Two men at points R and S, 76 miles apart, set out at the same time to walk towards each other. The man at R walks uniformly at the rate of $4\frac{1}{2}$ miles per hour; the man at S walks at the constant rate of $3\frac{1}{4}$ miles per hour for the first hour, at $3\frac{3}{4}$ miles per hour for the second hour, and so on, in arithmetic progression. If the men meet x miles nearer R than S in an integral number of hours, then x is:

(A) 10 (B) 8 (C) 6 (D) 4 (E) 2

21 The expression $x^2 - y^2 - z^2 + 2yz + x + y - z$ has:

(A) no linear factor with integer coeficients and integer exponents

- **(B)** the factor -x + y + z
- (C) the factor x y z + 1

1963 AMC 12/AHSME

AoPS Community

(D) the factor x + y - z + 1

(E) the factor x - y + z + 1

22 Acute-angled triangle ABC is inscribed in a circle with center at O; AB = 120 and BC = 72. A point E is taken in minor arc AC such that OE is perpendicular to AC. Then the ratio of the magnitudes of angles OBE and BAC is:

(A)
$$\frac{5}{18}$$
 (B) $\frac{2}{9}$ (C) $\frac{1}{4}$ (D) $\frac{1}{3}$ (E) $\frac{4}{9}$

23 *A* gives *B* as many cents as *B* has and *C* as many cents as *C* has. Similarly, *B* then gives *A* and *C* as many cents as each then has. *C*, similarly, then gives *A* and *B* as many cents as each then has. If each finally has 16 cents, with how many cents does *A* start?

(A) 24 **(B)** 26 **(C)** 28 **(D)** 30 **(E)** 32

24 Consider equations of the form $x^2 + bx + c = 0$. How many such equations have real roots and have coefficients *b* and *c* selected from the set of integers $\{1, 2, 3, 4, 5, 6\}$?

(A) 20 (B) 19 (C) 18 (D) 17 (E) 16

25 Point *F* is taken in side *AD* of square *ABCD*. At *C* a perpendicular is drawn to *CF*, meeting *AB* extended at *E*. The area of *ABCD* is 256 square inches and the area of triangle *CEF* is 200 square inches. Then the number of inches in *BE* is:

(A) 12 (B) 14 (C) 15 (D) 16 (E) 20

Consider the statements:

(1)
$$p \wedge \sim q \wedge r$$
 (2) $\sim p \wedge \sim q \wedge r$ (3) $p \wedge \sim q \wedge \sim r$ (4) $\sim p \wedge q \wedge r$

	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4	4
	p is true truth of t " r is impl	and q and he stater lied by th	d <i>r</i> are fal nent e stateme	se $(4) q$ are that p	and <i>r</i> a implie	-
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4	4
27	-	•	are drawn nich they c	•		n no two parallel and no three concurrent. The number e is:
	(A) 16	(B) 20	(C) 22	(D) 2	24	(E) 26
28			n $3x^2 - 4x$ tion is a m			real roots. The value of k for which the product of the
	(A) $\frac{16}{9}$	(B) $\frac{16}{3}$	(C) $\frac{4}{9}$	(D)	$\frac{4}{3}$ ((E) $-\frac{4}{3}$
29			ed vertica $16t^2$. The			aches, at the end of t seconds, an elevation of s feet tion is:
	(A) 800	(B) 64	0 (C)	400 (D) 320	0 (E) 160
30	Let				F	$F = \log \frac{1+x}{1-x}.$
	Find a ne	ew function	on G by re	placing e	each x	x in F by
						$\frac{3x+x^3}{1+3x^2},$
	and simp	olify. The	simplified	express	ion G i	; is equal to:
	(A) – <i>F</i>	(B) <i>F</i>	7 (C) 3	F (D) F ³	(E) $F^3 - F$
31	The num	ber of so	lutions in	positive	intege	ers of $2x + 3y = 763$ is:
	(A) 255	(B) 25	4 (C)	128 (D) 127	7 (E) 0
32	dimensic	ons x and	dy, x < a	$y < a_{,}$	so tha	and b , $a < b$. It is required to obtain a rectangle with pat its perimeter is one-third that of R , and its area is (different) rectangles is:

where p,q, and r are propositions. How many of these imply the truth of $(p \rightarrow q) \rightarrow r$?

33	Given the line $y = \frac{3}{4}x + 6$ and a line L parallel to the given line and 4 units from it. A possible equation for L is:
	(A) $y = \frac{3}{4}x + 1$ (B) $y = \frac{3}{4}x$ (C) $y = \frac{3}{4}x - \frac{2}{3}$
	(D) $y = \frac{3}{4}x - 1$ (E) $y = \frac{3}{4}x + 2$
34	In triangle ABC, side $a = \sqrt{3}$, side $b = \sqrt{3}$, and side $c > 3$. Let x be the largest number such that the magnitude, in degrees, of the angle opposite side c exceeds x . Then x equals:
	(A) 150 (B) 120 (C) 105 (D) 90 (E) 60
35	The lengths of the sides of a triangle are integers, and its area is also an integer. One side is 21 and the perimeter is 48 . The shortest side is:
	(A) 8 (B) 10 (C) 12 (D) 14 (E) 16
36	A person starting with 64 cents and making 6 bets, wins three times and loses three times, the wins and losses occurring in random order. The chance for a win is equal to the chance for a loss. If each wager is for half the money remaining at the time of the bet, then the final result is:
	loss. If each wayer is for han the money remaining at the time of the bet, then the infarresult is.
	(A) a loss of 27 (B) a gain of 27 (C) a loss of 37
	(A) a loss of 27 (B) a gain of 27 (C) a loss of 37
37	 (A) a loss of 27 (B) a gain of 27 (C) a loss of 37 (D) neither a gain nor a loss (E) a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss depending upon the order in which the wins an analysis of a gain or a loss dependence of a g
37	 (A) a loss of 27 (B) a gain of 27 (C) a loss of 37 (D) neither a gain nor a loss (E) a gain or a loss depending upon the order in which the wins an Note: Due to the lack of Large Xpackages, the numbers in the answer choices are in cents ¢ Given points P₁, P₂,, P₇ on a straight line, in the order stated (not necessarily evenly spaced).
37	(A) a loss of 27 (B) a gain of 27 (C) a loss of 37 (D) neither a gain nor a loss (E) a gain or a loss depending upon the order in which the wins an Note: Due to the lack of $\[Mathbb{E}]$ packages, the numbers in the answer choices are in cents ¢ Given points P_1, P_2, \dots, P_7 on a straight line, in the order stated (not necessarily evenly spaced). Let P be an arbitrarily selected point on the line and let s be the sum of the undirected lengths
37	(A) a loss of 27 (B) a gain of 27 (C) a loss of 37 (D) neither a gain nor a loss (E) a gain or a loss depending upon the order in which the wins an Note: Due to the lack of $\[mathbb{E}T\[mathbb{E}X\]$ packages, the numbers in the answer choices are in cents ¢ Given points P_1, P_2, \dots, P_7 on a straight line, in the order stated (not necessarily evenly spaced). Let P be an arbitrarily selected point on the line and let s be the sum of the undirected lengths PP_1, PP_2, \dots, PP_7 .
37	(A) a loss of 27 (B) a gain of 27 (C) a loss of 37 (D) neither a gain nor a loss (E) a gain or a loss depending upon the order in which the wins an Note: Due to the lack of $\[Mathbb{E}]_{E}$ Xpackages, the numbers in the answer choices are in cents ¢ Given points P_1, P_2, \dots, P_7 on a straight line, in the order stated (not necessarily evenly spaced). Let P be an arbitrarily selected point on the line and let s be the sum of the undirected lengths PP_1, PP_2, \dots, PP_7 . Then s is smallest if and only if the point P is:

1963 AMC 12/AHSME

(A) 4 (B) 8 (C) 10 (D) 12 (E) 16

39 In triangle *ABC* lines *CE* and *AD* are drawn so that $\frac{CD}{DB} = \frac{3}{1} \text{ and } \frac{AE}{EB} = \frac{3}{2}. \text{ Let } r = \frac{CP}{PE}$

where P is the intersection point of CE and AD. Then r equals:

1963 AMC 12/AHSME

AoPS Community

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.