AoPS Community

AMC 12/AHSME 1966

www.artofproblemsolving.com/community/c4830
by 4everwise, bluecarneal, rrusczyk

1 Given that the ratio of $3 x-4$ to $y+15$ is constant, and $y=3$ when $x=2$, then, when $y=12, x$ equals:
(A) $\frac{1}{8}$
(B) $\frac{7}{3}$
(C) $\frac{7}{8}$
(D) $\frac{7}{2}$
(E) 8

2 When the base of a triangle is increased 10% and the altitude to this base is decreased 10%, the change in area is
(A) 1% increase
(B) $\frac{1}{2} \%$ increase
(C) 0%
(D) $\frac{1}{2} \%$ decrease
(E) 1% decrease

3 If the arithmetic mean of two numbers is 6 and thier geometric mean is 10 , then an equation with the given two numbers as roots is:
(A) $x^{2}+12 x+100=0$
(B) $x^{2}+6 x+100=0$
(C) $x^{2}-12 x-10=0$
(D) $x^{2}-12 x+100=$ $0 \quad$ (E) $x^{2}-6 x+100=0$

4 Circle I is circumscribed about a given square and circle II is inscribed in the given square. If r is the ratio of the area of circle I to that of circle $I I$, then r equals:
(A) $\sqrt{2}$
(B) 2
(C) $\sqrt{3}$
(D) $2 \sqrt{2}$
(E) $2 \sqrt{3}$

5 The number of values of x satisfying the equation

$$
\frac{2 x^{2}-10 x}{x^{2}-5 x}=x-3
$$

is:
(A) zero
(B) one
(C) two
(D) three
(E) an integer greater than 3
$6 \quad A B$ is the diameter of a circle centered at $O . C$ is a point on the circle such that angle $B O C$ is 60°. If the diameter of the circle is 5 inches, the length of chord $A C$, expressed in inches, is:
(A) 3
(B) $\frac{5 \sqrt{2}}{2}$
(C) $\frac{5 \sqrt{3}}{2}$
(D) $3 \sqrt{3}$
(E) none of these

7 Let $\frac{35 x-29}{x^{2}-3 x+2}=\frac{N_{1}}{x-1}+\frac{N_{2}}{x-2}$ be an identity in x. The numerical value of $N_{1} N_{2}$ is:
(A) -246
(B) -210
(C) -29
(D) 210
(E) 246

8 The length of the common chord of two intersecting circles is 16 feet. If the radii are 10 feet and 17 feet, a possible value for the distance between the centers of teh circles, expressed in feet, is:
(A) 27
(B) 21
(C) $\sqrt{389}$
(D) 15
(E) undetermined

9 If $x=\left(\log _{8} 2\right)^{\left(\log _{2} 8\right)}$, then $\log _{3} x$ equals:
(A) -3
(B) $-\frac{1}{3}$
(C) $\frac{1}{3}$
(D) 3
(E) 9

10 If the sum of two numbers is 1 and their product is 1 , then the sum of their cubes is:
(A) 2
(B) $-2-\frac{3 i \sqrt{3}}{4}$
(C) 0
(D) $-\frac{3 i \sqrt{3}}{4}$
(E) -2

11 The sides of triangle $B A C$ are in the ratio $2: 3: 4 . B D$ is the angle-bisector drawn to the shortest side $A C$, dividing it into segments $A D$ and $C D$. If the length of $A C$ is 10 , then the length of the longer segment of $A C$ is:
(A) $3 \frac{1}{2}$
(B) 5
(C) $5 \frac{5}{7}$
(D) 6
(E) $7 \frac{1}{2}$

12 The number of real values of x that satisfy the equation

$$
\left(2^{6 x+3}\right)\left(4^{3 x+6}\right)=8^{4 x+5}
$$

is:
(A) 0
(B) 1
(C) 2
(D) 3
(E) greater than 3

13 The number of points with positive rational coordinates selected from the set of points in the xy-plane such that $x+y \leq 5$, is:
(A) 9
(B) 10
(C) 14
(D) 15
(E) infinite

14 The length of rectangle $A B C D$ is 5 inches and its width is 3 inches. Diagonal $A C$ is dibided into three equal segments by points E and F. The area of triangle $B E F$, expressed in square inches, is:
(A) $\frac{3}{2}$
(B) $\frac{5}{3}$
(C) $\frac{5}{2}$
(D) $\frac{1}{3} \sqrt{34}$
(E) $\frac{1}{3} \sqrt{68}$

15 If $x-y>x$ and $x+y<y$, then
(A) $y<x$
(B) $x<y$
(C) $x<y<0$
(D) $x<0, y<0$ (E) $x<0, y>0$

16 If $\frac{4^{x}}{2^{x+y}}=8$ and $\frac{9^{x+y}}{3^{5 y}}=243, x$ and y are real numbers, then $x y$ equals:
(A) $\frac{12}{5}$
(B) 4
(C) 6
(D) 12
(E) -4

17 The number of distinct points common to the curves $x^{2}+4 y^{2}=1$ and $4 x^{2}+y^{2}=5$ is:
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

18 In a given arithmetic sequence the first term is 2 , the last term is 29 , and the sum of all the terms is 155 . The common difference is:
(A) 3
(B) 2
(C) $\frac{27}{19}$
(D) $\frac{13}{9}$
(E) $\frac{23}{38}$

19 Let s_{1} be the sum of the first n terms of the arithmetic sequence $8,12, \cdots$ and let s_{2} be the sum of the first n terms of the arithmetic sequence $17,19 \cdots$. Assume $n \neq 0$. Then $s_{1}=s_{2}$ for:

1966 AMC 12/AHSME

(A) no value of n
(B) one value of n
(C) two values of $n(D)$ four values of n
(E) more than four v

20 The negation of the proposition "For all pairs of real numbers a, b, if $a=0$, then $a b=0$ " is: There are real numbers a, b such that
(A) $a \neq 0, a b \neq 0$
(B) $a \neq 0, a b=0$
(C) $a=0, a b \neq 0$
(D) $a b \neq 0, a \neq 0$
(E) $a b=0, a \neq 0$

21 An "n-pointed star" is formed as follows: the sides of a convex polygon are numbered consecutively $1,2, \cdots, k, \cdots, n, n \geq 5$; for all n values of k, sides k and $k+2$ are non-parallel, sides $n+1$ and $n+2$ being respectively identical with sides 1 and 2 ; prolong the n pairs of sides numbered k and $k+2$ until they meet. (A figure is shown for the case $n=5$)
http://www.artofproblemsolving.com/Forum/album_pic.php?pic_id=704
\&sid=8da93909c5939e037a
Let S be the degree-sum of the interior angles at the n points of the star; then S equals:
(A) 180
(B) 360
(C) $180(n+2)$
(D) $180(n-2)$
(E) $180(n-4)$

22 Consider the statements:

$$
\text { (I) } \sqrt{a^{2}+b^{2}}=0 \text { (II) } \sqrt{a^{2}+b^{2}}=a b \text { (III) } \sqrt{a^{2}+b^{2}}=a+b \text { (IV) } \sqrt{a^{2}+b^{2}}=a-b,
$$

where we allow a and b to be real or complex numbers. Those statements for which there exist solutions other than $a=0$ and $b=0$ are:
(A) (I), (II), (III), (IV)
(B) (II), (III), (IV)
(C) (I), (III), (IV)
(D) (III), (IV)
(E) (I)

23 If x is a real and $4 y^{2}+4 x y+x+6=0$, then the complete set of values of x for which y is real, is:
(A) $x \leq-2$ or $x \geq 3$
(B) $x \leq 2$ or $x \geq 3$
(C) $x \leq-3$ or $x \geq 2$
(D) $-3 \leq x \leq 2$
(E) $2 \leq x \leq 3$

24 If $\log _{M} N=\log _{N} M, M \neq N, M N>0, M \neq 1, N \neq 1$, then $M N$ equals:
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 10
(E) a number greater than 2 and less than 10

25 If $F(n+1)=\frac{2 F(n)+1}{2}$ for $n=1,2, \ldots$, and $F(1)=2$, then $F(101)$ equals:
(A) 49
(B) 50
(C) 51
(D) 52
(E) 53

26 Let m be a positive integer and let the lines $13 x+11 y=700$ and $y=m x-1$ intersect in a point whose coordinates are integers. Then m is:
(A) 4
(B) 5
(C) 6
(D) 7
(E) one of the integers 4, 5, 6, 7 and one other positive integer

27 At his usual rate a man rows 15 miles downstream in five hours less time than it takes him to return. If he doubles his usual rate, the time downstream is only one hour less than the time
upstream. In miles per hour, the rate of the stream's current is:
(A) 2
(B) $\frac{5}{2}$
(C) 3
(D) $\frac{7}{2}$
(E) 4

28 Five points O, A, B, C, D are taken in order on a straight line with distances $O A=a, O B=b$, $O C=c$, and $O D=d . P$ is a point on the line between B and C and such that $A P: P D=B P$: $P C$. Then $O P$ equals:
(A) $\frac{b^{2}-b c}{a-b+c-d}$
(B) $\frac{a c-b}{a-b+c-d}$
(C) $-\frac{b d+c}{a-b+c-d}$
(D) $\frac{b c+a d}{a+b+c+d}$
(E) $\frac{a c-b d}{a+b+c+d}$

29 The number of postive integers less than 1000 divisible by neither 5 nor 7 is:
(A) 688
(B) 686
(C) 684
(D) 658
(E) 630

30 If three of the roots of $x^{4}+a x^{2}+b x+c=0$ are 1,2 , and 3 , then the value of $a+c$ is:
(A) 35
(B) 24
(C) -12
(D) -61
(E) -63

31 Triangle $A B C$ is inscribed in a circle with center O^{\prime}. A circle with center O is inscribed in triangle $A B C . A O$ is drawn, and extended to intersect the larger circle in D. Then, we must have:
(A) $C D=B D=O^{\prime} D$
(B) $A O=C O=O D$
(C) $C D=C O=B D$
(D) $C D=O D=B D$
(E) $O^{\prime} B=O^{\prime} C=O D$
 M, and let $M D$ be drawn parallel to $P C$ and intersecting $B C$ at D. If the ratio of the area of the
triangle $B P D$ to that of triangle $A B C$ is denoted by r, then
(A) $\frac{1}{2}<r<1$ depending upon the position of P
(B) $r=\frac{1}{2}$ independent of the position of P
(C) $\frac{1}{2} \leq r<1$ depending upon the position of P
(D) $\frac{1}{3}<r<\frac{2}{3}$ depending upon the position of P
(E) $r=\frac{1}{3}$ independent of the position of P

33 If $a b \neq 0$ and $|a| \neq|b|$ the number of distinct values of x satisfying the equation

$$
\frac{x-a}{b}+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}
$$

is: (A) zero
(B) one
(C) two
(D) three
(E) four

34 Let r be the speed in miles per hour at which a wheel, 11 feet in circumference, travels. If the time for a complete rotation of the wheel is shortened by $\frac{1}{4}$ of a second, the speed r is increased by 5 miles per hour. The r is:
(A) 9
(B) 10
(C) $10 \frac{1}{2}$
(D) 11
(E) 12

35 Let O be an interior point of triangle $A B C$, and let $s_{1}=O A+O B+O C$. If $s_{2}=A B+A C+C A$, then
(A) for every triangle $s_{2}>2 s_{1}, s_{1} \leq s_{2}$
(B) for every triangle $s_{2} \geq 2 s_{1}, s_{1}<s_{2}$
(C) for every triangle $s_{1}>\frac{1}{2} s_{2}, s_{1}<s_{2}$
(D) for every triangle $s_{2} \geq 2 s_{1}, s_{1} \leq s_{2}$
(E) neither (A) nor (B) nor (C) nor (D) applies to every triangle

36 Let $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$ be an identity in x. If we lt $s=a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$, then s equals:
(A) 2^{n}
(B) $2^{n}+1$
(C) $\frac{3^{n}-1}{2}$
(D) $\frac{3^{n}}{2}$
(E) $\frac{3^{n}+1}{2}$

37 Three men, Alpha, Beta, and Gamma, working together, do a job in 6 hours less time than Alpha alone, in 1 hour less time than Beta alone, and in one-half the time needed by Gamma when working alone. Let h be the number of hours needed by Alpha and Beta, working together to do the job. Then h equals:
(A) $\frac{5}{2}$
(B) $\frac{3}{2}$
(C) $\frac{4}{3}$
(D) $\frac{5}{4}$
(E) $\frac{3}{4}$

38 In triangle $A B C$ the medians $A M$ and $C N$ to sides $B C$ and $A B$, respectively, intersect in point O. P is the midpoint of side $A C$, and $M P$ intersects $C N$ in Q. If the area of triangle $O M Q$ is n, then the area of triangle $A B C$ is:
(A) $16 n$
(B) $18 n$
(C) $21 n$
(D) $24 n$
(E) $27 n$

39 In base R_{1} the expanded fraction F_{1} becomes $0.373737 \ldots$, and the expanded fraction F_{2} becomes $0.737373 \ldots$... In base R_{2} fraction F_{1}, when expanded, becomes $0.252525 \ldots$, while fraction F_{2} becomes $0.525252 \ldots$. The sum of R_{1} and R_{2}, each written in base ten is:
(A) 24
(B) 22
(C) 21
(D) 20
(E) 19

40

In this figure $A B$ is a diameter of a circle, centered at O, with radius a. A chord $A D$ is drawn and extended to meet the tangent to the circle at B in point C. Point E is taken on $A C$ so that $A E=D C$. Denoting the distances of E from the tangent through A and from the diameter $A B$ by x and y, respectively, we can deduce the relation:
(A) $y^{2}=\frac{x^{3}}{2 a-x}$
(B) $y^{2}=\frac{x^{3}}{2 a+x}$
(C) $y^{4}=\frac{x^{2}}{2-x}$
(D) $x^{2}=\frac{y^{2}}{2 a-x}$
(E) $x^{2}=\frac{y^{2}}{2 a+x}$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

