AoPS Community

Junior Balkan MO 2015

www.artofproblemsolving.com/community/c100694
by Sayan, neverlose

- June 26th

1 Find all prime numbers a, b, c and positive integers k satisfying the equation

$$
a^{2}+b^{2}+16 c^{2}=9 k^{2}+1
$$

Proposed by Moldova
2 Let a, b, c be positive real numbers such that $a+b+c=3$. Find the minimum value of the expression

$$
A=\frac{2-a^{3}}{a}+\frac{2-b^{3}}{b}+\frac{2-c^{3}}{c} .
$$

3 Let $A B C$ be an acute triangle.The lines l_{1} and l_{2} are perpendicular to $A B$ at the points A and B, respectively. The perpendicular lines from the midpoint M of $A B$ to the lines $A C$ and $B C$ intersect l_{1} and l_{2} at the points E and F, respectively. If D is the intersection point of the lines $E F$ and $M C$, prove that

$$
\angle A D B=\angle E M F .
$$

4 An L-shape is one of the following four pieces, each consisting of three unit squares:

A 5×5 board, consisting of 25 unit squares, a positive integer $k \leq 25$ and an unlimited supply of L-shapes are given. Two players A and B, play the following game: starting with A they play alternatively mark a previously unmarked unit square until they marked a total of k unit squares.

We say that a placement of L-shapes on unmarked unit squares is called good if the L-shapes do not overlap and each of them covers exactly three unmarked unit squares of the board.

B wins if every good placement of L-shapes leaves uncovered at least three unmarked unit squares. Determine the minimum value of k for which B has a winning strategy.

