

AoPS Community

2019 Brazil National Olympiad

Brazil National Olympiad 2019

www.artofproblemsolving.com/community/c1007703 by pablock, mcyoder, Zelderis

Day 1 Monday, November 11

- 1 Let ω_1 and ω_2 be two circles with centers C_1 and C_2 , respectively, which intersect at two points P and Q. Suppose that the circumcircle of triangle PC_1C_2 intersects ω_1 at $A \neq P$ and ω_2 at $B \neq P$. Suppose further that Q is inside the triangle PAB. Show that Q is the incenter of triangle PAB.
- **2** Given are the real line and the two unique marked points 0 and 1. We can perform as many times as we want the following operation: we take two already marked points a and b and mark the reflection of a over b. Let f(n) be the minimum number of operations needed to mark on the real line the number n (which is the number at a distance |n| from 0 and it is on the right of 0 if n > 0 and on the left of 0 if n < 0). For example, f(0) = f(1) = 0 and f(-1) = f(2) = 1. Find f(n).
- **3** Let $\mathbb{R}_{>0}$ be the set of the positive real numbers. Find all functions $f : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that

$$f(xy + f(x)) = f(f(x)f(y)) + x$$

for all positive real numbers x and y.

Day 2 Tuesday, November 12

4 Prove that for every positive integer m there exists a positive integer n_m such that for every positive integer $n \ge n_m$, there exist positive integers a_1, a_2, \ldots, a_n such that

$$\frac{1}{a_1^m} + \frac{1}{a_2^m} + \ldots + \frac{1}{a_n^m} = 1.$$

- (a) Prove that given constants *a*, *b* with 1 < *a* < 2 < *b*, there is no partition of the set of positive integers into two subsets *A*₀ and *A*₁ such that: if *j* ∈ {0,1} and *m*, *n* are in *A_j*, then either *n/m* < *a* or *n/m* > *b*.
 (b) Find all pairs of real numbers (*a*, *b*) with 1 < *a* < 2 < *b* for which the following property holds: there exists a partition of the set of positive integers into three subsets *A*₀, *A*₁, *A*₂ such that if *j* ∈ {0,1,2} and *m*, *n* are in *A_j*, then either *n/m* < *a* or *n/m* > *b*.
- 6 Let $A_1A_2A_3A_4A_5$ be a convex, cyclic pentagon with $\angle A_i + \angle A_{i+1} > 180^\circ$ for all $i \in \{1, 2, 3, 4, 5\}$ (all indices modulo 5 in the problem). Define B_i as the intersection of lines $A_{i-1}A_i$ and $A_{i+1}A_{i+2}$,

AoPS Community

2019 Brazil National Olympiad

forming a star. The circumcircles of triangles $A_{i-1}B_{i-1}A_i$ and $A_iB_iA_{i+1}$ meet again at $C_i \neq A_i$, and the circumcircles of triangles $B_{i-1}A_iB_i$ and $B_iA_{i+1}B_{i+1}$ meet again at $D_i \neq B_i$. Prove that the ten lines $A_iC_i, B_iD_i, i \in \{1, 2, 3, 4, 5\}$, have a common point.

Level 2 Level 2	
1	An eight-digit number is said to be 'robust' if it meets both of the following conditions: (i) None of its digits is 0. (ii) The difference between two consecutive digits is 4 or 5.
	Answer the following questions:
	(a) How many are robust numbers? (b) A robust number is said to be 'super robust' if all of its digits are distinct. Calculate the sum of all the super robust numbers.
2	Let a, b and k be positive integers with $k > 1$ such that $lcm(a, b) + gcd(a, b) = k(a + b)$. Prove that $a + b \ge 4k$
3	Let ABC be an acutangle triangle inscribed in a circle Γ of center O . Let D be the height of the vertex A . Let E and F be points over Γ such that $AE = AD = AF$. Let P and Q be the intersection points of the EF with sides AB and AC respectively. Let X be the second intersection point of Γ with the circle circumscribed to the triangle APQ . Show that the lines XD and AO meet at a point above sobre
4	Let ABC be an acutangle triangle and D any point on the BC side. Let E be the symmetrical of D in AC and F is the symmetrical D relative to AB . A straight ED intersects straight AB at G , while straight FD intersects the line AC in H . Prove that the points A, E, F, G and H are on the same circumference.
5	In the picture below, a white square is surrounded by four black squares and three white squares. They are surrounded by seven black squares. https://i.stack.imgur.com/Dalmm.png What is the maximum number of white squares that can be surrounded by <i>n</i> black squares?
6	In the Cartesian plane, all points with both integer coordinates are painted blue. Blue colon they are said to be mutually visible if the line segment connecting them has no other blue dots. Prove that

There is a set of 2019 blue dots that are mutually visible two by two.

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱