Art of Problem Solving

AoPS Community

Korea National Olympiad 2019

www.artofproblemsolving.com/community/c1009458
by Hypernova, Iminsl

- Day 1

1 The sequence $a_{1}, a_{2}, \ldots, a_{2019}$ satisfies the following condition. $a_{1}=1, a_{n+1}=2019 a_{n}+1$
Now let $x_{1}, x_{2}, \ldots, x_{2019}$ real numbers such that $x_{1}=a_{2019}, x_{2019}=a_{1}$ (The others are arbitary.) Prove that $\sum_{k=1}^{2018}\left(x_{k+1}-2019 x_{k}-1\right)^{2} \geq \sum_{k=1}^{2018}\left(a_{2019-k}-2019 a_{2020-k}-1\right)^{2}$

2 Triangle $A B C$ is an scalene triangle. Let I the incenter, Ω the circumcircle, E the A-excenter of triangle $A B C$. Let Γ the circle centered at E and passes A. Γ and Ω intersect at point $D(\neq A)$, and the perpendicular line of $B C$ which passes A meets Γ at point $K(\neq A) . L$ is the perpendicular foot from I to $A C$. Now if $A E$ and $D K$ intersects at F, prove that $B E \cdot C I=2 \cdot C F \cdot C L$.

3 Suppose that positive integers m, n, k satisfy the equations

$$
m^{2}+1=2 n^{2}, 2 m^{2}+1=11 k^{2} .
$$

Find the residue when n is divided by 17 .
4 Let $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \cdots,\left(x_{19}, y_{19}, z_{19}\right)$ be integers. Prove that there exist pairwise distinct subscripts i, j, k such that $x_{i}+x_{j}+x_{k}, y_{i}+y_{j}+y_{k}, z_{i}+z_{j}+z_{k}$ are all multiples of 3 .

- Day 2
$5 \quad$ Find all functions f such that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f\left(f(x)-x+y^{2}\right)=y f(y)$
6 In acute triangle $A B C, A B>A C$. Let I the incenter, Ω the circumcircle of triangle $A B C$, and D the foot of perpendicular from A to $B C$. $A I$ intersects Ω at point $M(\neq A)$, and the line which passes M and perpendicular to $A M$ intersects $A D$ at point E. Now let F the foot of perpendicular from I to $A D$.
Prove that $I D \cdot A M=I E \cdot A F$.
$7 \quad$ For prime $p \equiv 1(\bmod 7)$, prove that there exists some positive integer m such that $m^{3}+m^{2}-$ $2 m-1$ is a multiple of p.

8 There are two countries A and B, where each countries have $n(\geq 2)$ airports. There are some two-way flights among airports of A and B, so that each airport has exactly 3 flights. There might be multiple flights among two airports; and there are no flights among airports of the same country. A travel agency wants to plan an exotic traveling course which travels through all
$2 n$ airports exactly once, and returns to the initial airport. If N denotes the number of all exotic traveling courses, then prove that $\frac{N}{4 n}$ is an even integer.
(Here, note that two exotic traveling courses are different if their starting place are different.)

