AoPS Community

Junior Balkan MO 2019

www.artofproblemsolving.com/community/c1015952
by Lukaluce

1 Find all prime numbers p for which there exist positive integers x, y, and z such that the number
$x^{p}+y^{p}+z^{p}-x-y-z$
is a product of exactly three distinct prime numbers.
2 Let a, b be two distinct real numbers and let c be a positive real numbers such that
$a^{4}-2019 a=b^{4}-2019 b=c$.
Prove that $-\sqrt{c}<a b<0$.
3 Triangle $A B C$ is such that $A B<A C$. The perpendicular bisector of side $B C$ intersects lines $A B$ and $A C$ at points P and Q, respectively. Let H be the orthocentre of triangle $A B C$, and let M and N be the midpoints of segments $B C$ and $P Q$, respectively. Prove that lines $H M$ and $A N$ meet on the circumcircle of $A B C$.

4 A 5×100 table is divided into 500 unit square cells, where n of them are coloured black and the rest are coloured white. Two unit square cells are called adjacent if they share a common side. Each of the unit square cells has at most two adjacent black unit square cells. Find the largest possible value of n.

