

AoPS Community

2016 Brazil Undergrad MO

Brazil Undergrad MO 2016

www.artofproblemsolving.com/community/c1018389 by mcyoder, Johann Peter Dirichlet

Day 1 Day 1

1 Let $(a_n)_{n\geq 1}$ s sequence of reals such that $\sum_{n\geq 1} \frac{a_n}{n}$ converges. Show that $\lim_{n\to\infty} \frac{1}{n} \cdot \sum_{k=1}^n a_k = 0$

2 Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^{2} + y^{2}f(x)) = xf(y)^{2} - f(x)^{2}$$

for every $x, y \in \mathbb{R}$

3 Let it $k \ge 1$ be an integer. Define the sequence $(a_n)_{n\ge 1}$ by $a_0 = 0, a_1 = 1$ and

$$a_{n+2} = ka_{n+1} + a_n$$

for $n \ge 0$. Let it p an odd prime number. Denote m(p) as the smallest positive integer m such that $p|a_m$. Denote T(p) as the smallest positive integer T such that for every natural j we gave $p|(a_{T+j} - a_j)$.

- Show that $T(p) \le (p-1) \cdot m(p)$. - Show that if $T(p) = (p-1) \cdot m(p)$ then

$$\prod_{1 \le j \le T(p)-1}^{(\text{mod } m(p))} a_j \equiv (-1)^{m(p)-1} \pmod{p}$$

Day 2 Day 2

4 Let

AoPS Community

$$A = \left(\begin{array}{cc} 4 & -\sqrt{5} \\ 2\sqrt{5} & -3 \end{array}\right)$$

Find all pairs of integers m, n with $n \ge 1$ and $|m| \le n$ such as all entries of $A^n - (m + n^2)A$ are integer.

5 A soccer ball is usually made from a polyhedral fugure model, with two types of faces, hexagons and pentagons, and in every vertex incide three faces - two hexagons and one pentagon.

We call a polyhedron *soccer-ball* if it is similar to the traditional soccer ball, in the following sense: its faces are *m*-gons or *n*-gons, $m \neq n$, and in every vertex incide three faces, two of them being *m*-gons and the other one being an *n*-gon.

- Show that *m* needs to be even.

- Find all soccer-ball polyhedra.
- **6** Let it C, D > 0. We call a function $f : \mathbb{R} \to \mathbb{R}$ pretty if f is a C^2 -class, $|x^3 f(x)| \leq C$ and $|xf''(x)| \leq D$.

- Show that if f is pretty, then, given $\epsilon \ge 0$, there is a $x_0 \ge 0$ such that for every x with $|x| \ge x_0$, we have $|x^2 f'(x)| < \sqrt{2CD} + \epsilon$. - Show that if $0 < E < \sqrt{2CD}$ then there is a pretty function f such that for every $x_0 \ge 0$ there is a $x > x_0$ such that $|x^2 f'(x)| > E$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱