AoPS Community

Brazil Undergrad MO 2017

www.artofproblemsolving.com/community/c1018401
by Rodinho_de_Pia, rodamaral

1 A polynomial is called positivist if it can be written as a product of two non-constant polynomials with non-negative real coefficients. Let $f(x)$ be a polynomial of degree greater than one such that $f\left(x^{n}\right)$ is positivist for some positive integer n. Show that $f(x)$ is positivist.

2 Let a and b be fixed positive integers. Show that the set of primes that divide at least one of the terms of the sequence $a_{n}=a \cdot 2017^{n}+b \cdot 2016^{n}$ is infinite.

3 Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0, x^{2}+y^{2}=1\right\} \cup\{(x, 0),-1 \leq x \leq 1\}$ be the edge of the closed semicircle with radius 1.
a) Let $n>1$ be an integer and $P_{1}, P_{2}, \ldots, P_{n} \in X$. Show that there exists a permutation $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that

$$
\sum_{j=1}^{n}\left|P_{\sigma(j+1)}-P_{\sigma(j)}\right|^{2} \leq 8
$$

Where $\sigma(n+1)=\sigma(1)$.
b) Find all sets $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\} \subset X$ such that for any permutation $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$,

$$
\sum_{j=1}^{n}\left|P_{\sigma(j+1)}-P_{\sigma(j)}\right|^{2} \geq 8
$$

Where $\sigma(n+1)=\sigma(1)$.
4 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive real numbers in which $\lim _{n \rightarrow \infty} a_{n}=0$ such that there is a constant $c>0$ so that for all $n \geq 1,\left|a_{n+1}-a_{n}\right| \leq c \cdot a_{n}^{2}$. Show that exists $d>0$ with $n a_{n} \geq d, \forall n \geq 1$.
$5 \quad$ Let $d \leq n$ be positive integers and A a real $d \times n$ matrix. Let $\sigma(A)$ be the supremum of inf ${ }_{v \in W,|v|=1}|A v|$ over all subspaces W of R^{n} with dimension d.

For each $j \leq d$, let $r(j) \in \mathbb{R}^{n}$ be the j th row vector of A. Show that:

$$
\sigma(A) \leq \min _{i \leq d} d(r(i),\langle r(j), j \neq i\rangle) \leq \sqrt{n} \sigma(A)
$$

In which all are euclidian norms and $d(r(i),\langle r(j), j \neq i\rangle)$ denotes the distance between $r(i)$ and the span of $r(j), 1 \leq j \leq d, j \neq i$.

6 Let's consider words over the alphabet $\{a, b\}$ to be sequences of a and b with finite length. We say $u \leq v$ if u is a subword of v if we can get u erasing some letter of v (for example $a b a \leq a b b a b$). We say that u differentiates the words x and y if $u \leq x$ but $u \not \leq y$ or vice versa.
Let m and l be positive integers. We say that two words are m-equivalents if there does not exist some u with length smaller than m that differentiates x and y.
a) Show that, if $2 m \leq l$, there exists two distinct words with length $l m$-equivalents.
b) Show that, if $2 m>l$, any two distinct words with length l aren't m-equivalent.

