AoPS Community

Brazil Undergrad MO 2019

www.artofproblemsolving.com/community/c1018411
by Zelderis, mathisreal, Johann Peter Dirichlet

1 Let I and 0 be the square identity and null matrices, both of size 2019. There is a square matrix A
with rational entries and size 2019 such that:
a) $A^{3}+6 A^{2}-2 I=0$?
b) $A^{4}+6 A^{3}-2 I=0$?

3 Let a, b, c be constants and a, b, c are positive real numbers. Prove that the equations $2 x+y+z=$ $\sqrt{c^{2}+z^{2}}+\sqrt{c^{2}+y^{2}} x+2 y+z=\sqrt{b^{2}+x^{2}}+\sqrt{b^{2}+z^{2}} x+y+2 z=\sqrt{a^{2}+x^{2}}+\sqrt{a^{2}+y^{2}}$ have exactly one real solution (x, y, z) with $x, y, z \geq 0$.

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for any (x, y) real numbers we have $f(x f(y)+f(x))+$ $f\left(y^{2}\right)=f(x)+y f(x+y)$

Problem 5 Let $M, k>0$ integers.
Let $X(M, k)$ the (infinite) set of all integers that can be factored as $p_{1}{ }^{e_{1}} \cdot p_{2}{ }^{e_{2}} \cdot \ldots \cdot p_{r}{ }^{e_{r}}$ where each p_{i} is not smaller than M and also each e_{i} is not smaller than k.
Let $Z(M, k, n)$ the number of elements of $X(M, k)$ not bigger than n.
Show that there are positive reals $c(M, k)$ and $\beta(M, k)$ such that

$$
\lim _{n \rightarrow \infty} \frac{Z(M, k, n)}{n^{\beta(M, k)}}=c(M, k)
$$

and find $\beta(M, k)$
6 In a hidden friend, suppose no one takes oneself. We say that the hidden friend has "marmalade" if
there are two people A and B such that A took B and B took A. For each positive integer n , let $f(n)$ be the number of hidden friends with n people where there is no "marmalade", i.e. $f(n)$ is equal to the number of permutations σ of $1,2, \ldots, n$ such that:
${ }^{*} \sigma(i) \neq i$ for all $i=1,2, \ldots, n$

* there are no $1 \leq i<j \leq n$ such that $\sigma(i)=j$ and $\sigma(j)=i$.

Determine the limit
$\lim _{n \rightarrow+\infty} \frac{f(n)}{n!}$

