Art of Problem Solving

AoPS Community

2020 China National Olympiad

www.artofproblemsolving.com/community/c1018560
by Henry_2001, WypHxr, mofumofu

Day 1 Nov. 25th, 2019
1 Let $a_{1}, a_{2}, \cdots, a_{41} \in \mathbb{R}$, such that $a_{41}=a_{1}, \sum_{i=1}^{40} a_{i}=0$, and for any $i=1,2, \cdots, 40,\left|a_{i}-a_{i+1}\right| \leq$ 1. Determine the greatest possible value of (1) $a_{10}+a_{20}+a_{30}+a_{40}$; (2) $a_{10} \cdot a_{20}+a_{30} \cdot a_{40}$.

2 In triangle $A B C, A B>A C$. The bisector of $\angle B A C$ meets $B C$ at D. P is on line $D A$, such that A lies between P and $D . P Q$ is tangent to $\odot(A B D)$ at $Q . P R$ is tangent to $\odot(A C D)$ at R. $C Q$ meets $B R$ at K. The line parallel to $B C$ and passing through K meets $Q D, A D, R D$ at E, L, F, respectively. Prove that $E L=K F$.

3 Let S be a set, $|S|=35$. A set F of mappings from S to itself is called to be satisfying property $P(k)$, if for any $x, y \in S$, there exist $f_{1}, \cdots, f_{k} \in F$ (not necessarily different), such that $f_{k}\left(f_{k-1}\left(\cdots\left(f_{1}(x)\right)\right)\right)=f_{k}\left(f_{k-1}\left(\cdots\left(f_{1}(y)\right)\right)\right)$.
Find the least positive integer m, such that if F satisfies property $P(2019)$, then it also satisfies property $P(m)$.

Day 2 Nov. 26th, 2019
4 Find the largest positive constant C such that the following is satisfied: Given n arcs (containing their endpoints) $A_{1}, A_{2}, \ldots, A_{n}$ on the circumference of a circle, where among all sets of three $\operatorname{arcs}\left(A_{i}, A_{j}, A_{k}\right)(1 \leq i<j<k \leq n)$, at least half of them has $A_{i} \cap A_{j} \cap A_{k}$ nonempty, then there exists $l>C n$, such that we can choose l arcs among $A_{1}, A_{2}, \ldots, A_{n}$, whose intersection is nonempty.

5 Given any positive integer c, denote $p(c)$ as the largest prime factor of c. A sequence $\left\{a_{n}\right\}$ of positive integers satisfies $a_{1}>1$ and $a_{n+1}=a_{n}+p\left(a_{n}\right)$ for all $n \geq 1$. Prove that there must exist at least one perfect square in sequence $\left\{a_{n}\right\}$.

6 Does there exist positive reals $a_{0}, a_{1}, \ldots, a_{19}$, such that the polynomial $P(x)=x^{20}+a_{19} x^{19}+$ $\ldots+a_{1} x+a_{0}$ does not have any real roots, yet all polynomials formed from swapping any two coefficients a_{i}, a_{j} has at least one real root?

