Art of Problem Solving

AoPS Community

USA TSTST 2015

www.artofproblemsolving.com/community/c102039
by v_Enhance, raxu

- Day 1

1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers, and let m be a fixed positive integer less than n. We say an index k with $1 \leq k \leq n$ is good if there exists some ℓ with $1 \leq \ell \leq m$ such that $a_{k}+a_{k+1}+\ldots+a_{k+\ell-1} \geq 0$, where the indices are taken modulo n. Let T be the set of all good indices. Prove that $\sum_{k \in T} a_{k} \geq 0$.
Proposed by Mark Sellke
2 Let ABC be a scalene triangle. Let K_{a}, L_{a} and M_{a} be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of $A K_{a} L_{a}$ intersects $A M_{a}$ a second time at point X_{a} different from A. Define X_{b} and X_{c} analogously. Prove that the circumcenter of $X_{a} X_{b} X_{c}$ lies on the Euler line of ABC.
(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of $A B C$.)

Proposed by Ivan Borsenco
3 Let P be the set of all primes, and let M be a non-empty subset of P. Suppose that for any non-empty subset $p_{1}, p_{2}, \ldots, p_{k}$ of M, all prime factors of $p_{1} p_{2} \ldots p_{k}+1$ are also in M. Prove that $M=P$.

Proposed by Alex Zhai

- Day 2

4 Let x, y, and z be real numbers (not necessarily positive) such that $x^{4}+y^{4}+z^{4}+x y z=4$. Show that $x \leq 2$ and $\sqrt{2-x} \geq \frac{y+z}{2}$.

Proposed by Alyazeed Basyoni
5 Let $\varphi(n)$ denote the number of positive integers less than n that are relatively prime to n. Prove that there exists a positive integer m for which the equation $\varphi(n)=m$ has at least 2015 solutions in n.

Proposed by lurie Boreico
$6 \quad$ A Nim-style game is defined as follows. Two positive integers k and n are specified, along with a finite set S of k-tuples of integers (not necessarily positive). At the start of the game, the
k-tuple $(n, 0,0, \ldots, 0)$ is written on the blackboard.
A legal move consists of erasing the tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ which is written on the blackboard and replacing it with $\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{k}+b_{k}\right)$, where ($b_{1}, b_{2}, \ldots, b_{k}$) is an element of the set S. Two players take turns making legal moves, and the first to write a negative integer loses. In the event that neither player is ever forced to write a negative integer, the game is a draw. Prove that there is a choice of k and S with the following property: the first player has a winning strategy if n is a power of 2 , and otherwise the second player has a winning strategy.
Proposed by Linus Hamilton

