AoPS Community

2020 Hong Kong (China) Mathematical Olympiad

www.artofproblemsolving.com/community/c1025391
by Blastzit

1 Given that a_{n} and b_{n} are two sequences of integers defined by

$$
\begin{aligned}
a_{1}=1, a_{2}=10, a_{n+1}=2 a_{n}+3 a_{n-1} & \text { for } n=2,3,4, \ldots, \\
b_{1}=1, b_{2}=8, b_{n+1}=3 b_{n}+4 b_{n-1} & \text { for } n=2,3,4, \ldots
\end{aligned}
$$

Prove that, besides the number 1, no two numbers in the sequences are identical.
2 Let $S=1,2, \ldots, 100$. Consider a partition of S into $S_{1}, S_{2}, \ldots, S_{n}$ for some n, i.e. S_{i} are nonempty, pairwise disjoint and $S=\bigcup_{i=1}^{n} S_{i}$. Let a_{i} be the average of elements of the set S_{i}. Define the score of this partition by

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} .
$$

Among all n and partitions of S, determine the minimum possible score.
3 Let $\triangle A B C$ be an isosceles triangle with $A B=A C$. The incircle Γ of $\triangle A B C$ has centre I, and it is tangent to the sides $A B$ and $A C$ at F and E respectively. Let Ω be the circumcircle of $\triangle A F E$. The two external common tangents of Γ and Ω intersect at a point P. If one of these external common tangents is parallel to $A C$, prove that $\angle P B I=90^{\circ}$.

4 There are $n \geq 3$ cities in a country and between any two cities A and B, there is either a one way road from A to B, or a one way road from B to A (but never both). Assume the roads are built such that it is possible to get from any city to any other city through these roads, and define $d(A, B)$ to be the minimum number of roads you must go through to go from city A to B. Consider all possible ways to build the roads. Find the minimum possible average value of $d(A, B)$ over all possible ordered pairs of distinct cities in the country.

