AoPS Community

www.artofproblemsolving.com/community/c103143
by randomusername

1 Consider a company of $n \geq 4$ people, where everyone knows at least one other person, but everyone knows at most $n-2$ of the others. Prove that we can sit four of these people at a round table such that all four of them know exactly one of their two neighbors. (Knowledge is mutual.)

2 We are given an acute triangle $A B C$, and inside it a point P, which is not on any of the heights $A A_{1}, B B_{1}, C C_{1}$. The rays $A P, B P, C P$ intersect the circumcircle of $A B C$ at points A_{2}, B_{2}, C_{2}. Prove that the circles $A A_{1} A_{2}, B B_{1} B_{2}$ and $C C_{1} C_{2}$ are concurrent.

3 Let K be a closed convex polygonal region, and let X be a point in the plane of K. Show that there exists a finite sequence of reflections in the sides of K, such that K contains the image of X after these reflections.

