

AoPS Community

www.artofproblemsolving.com/community/c103151

by randomusername

- 1 Let a, b be positive real numbers satisfying 2ab = a b. Denote for any positive integer $k x_k$ and y_k to be the closest integer to ak and bk, respectively (if there are two closest integers, choose the larger one). Prove that any positive integer n appears in the sequence $(x_k)_{k\geq 1}$ if and only if it appears at least three times in the sequence $(y_k)_{k\geq 1}$.
- Consider the closed polygonal discs P₁, P₂, P₃ with the property that for any three points A ∈ P₁, B ∈ P₂, C ∈ P₃, we have [△ABC] ≤ 1. (Here [X] denotes the area of polygon X.)
 (a) Prove that min{[P₁], [P₂], [P₃]} < 4.
 (b) Give an example of polygons P₁, P₂, P₃ with the above property such that [P₁] > 4 and [P₂] > 4.
- **3** Is it true that for integer $n \ge 2$, and given any non-negative reals ℓ_{ij} , $1 \le i < j \le n$, we can find a sequence $0 \le a_1, a_2, \ldots, a_n$ such that for all $1 \le i < j \le n$ to have $|a_i a_j| \ge \ell_{ij}$, yet still $\sum_{i=1}^n a_i \le \sum_{1 \le i < j \le n} \ell_{ij}$?

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱