AoPS Community

www.artofproblemsolving.com/community/c103151
by randomusername

1 Let a, b be positive real numbers satisfying $2 a b=a-b$. Denote for any positive integer $k x_{k}$ and y_{k} to be the closest integer to $a k$ and $b k$, respectively (if there are two closest integers, choose the larger one). Prove that any positive integer n appears in the sequence $\left(x_{k}\right)_{k \geq 1}$ if and only if it appears at least three times in the sequence $\left(y_{k}\right)_{k \geq 1}$.

2 Consider the closed polygonal discs P_{1}, P_{2}, P_{3} with the property that for any three points $A \in P_{1}$, $B \in P_{2}, C \in P_{3}$, we have $[\triangle A B C] \leq 1$. (Here $[X]$ denotes the area of polygon X.)
(a) Prove that $\min \left\{\left[P_{1}\right],\left[P_{2}\right],\left[P_{3}\right]\right\}<4$.
(b) Give an example of polygons P_{1}, P_{2}, P_{3} with the above property such that $\left[P_{1}\right]>4$ and $\left[P_{2}\right]>4$.

3 Is it true that for integer $n \geq 2$, and given any non-negative reals $\ell_{i j}, 1 \leq i<j \leq n$, we can find a sequence $0 \leq a_{1}, a_{2}, \ldots, a_{n}$ such that for all $1 \leq i<j \leq n$ to have $\left|a_{i}-a_{j}\right| \geq \ell_{i j}$, yet still $\sum_{i=1}^{n} a_{i} \leq \sum_{1 \leq i<j \leq n} \ell_{i j}$?

