AoPS Community

www.artofproblemsolving.com/community/c103152
by randomusername

1 Let J_{A} and J_{B} be the A-excenter and B-excenter of $\triangle A B C$. Consider a chord $\overline{P Q}$ of circle $A B C$ which is parallel to $A B$ and intersects segments $\overline{A C}$ and $\overline{B C}$. If lines $A B$ and $C P$ intersect at R, prove that

$$
\angle J_{A} Q J_{B}+\angle J_{A} R J_{B}=180^{\circ} .
$$

2 Denote by $E(n)$ the number of 1 's in the binary representation of a positive integer n. Call n interesting if $E(n)$ divides n. Prove that
(a) there cannot be five consecutive interesting numbers, and
(b) there are infinitely many positive integers n such that $n, n+1$ and $n+2$ are each interesting.

3 Consider n events, each of which has probability $\frac{1}{2}$. We also know that the probability of any two both happening is $\frac{1}{4}$. Prove the following.
(a) The probability that none of these events happen is at most $\frac{1}{n+1}$.
(b) We can reach equality in (a) for infinitely many n.

