

AoPS Community

www.artofproblemsolving.com/community/c103153

by randomusername

- 1 We have *n* keys, each of them belonging to exactly one of *n* locked chests. Our goal is to decide which key opens which chest. In one try we may choose a key and a chest, and check whether the chest can be opened with the key. Find the minimal number p(n) with the property that using p(n) tries, we can surely discover which key belongs to which chest.
- 2 Consider a triangle ABC, with the points A_1 , A_2 on side BC, B_1 , $B_2 \in \overline{AC}$, C_1 , $C_2 \in \overline{AB}$ such that $AC_1 < AC_2$, $BA_1 < BA_2$, $CB_1 < CB_2$. Let the circles AB_1C_1 and AB_2C_2 meet at A and A^* . Similarly, let the circles BC_1A_1 and BC_2A_2 intersect at $B^* \neq B$, let CA_1B_1 and CA_2B_2 intersect at $C^* \neq C$. Prove that the lines AA^* , BB^* , CC^* are concurrent.
- **3** For what positive integers n and k do there exits integers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_k such that the products $a_i b_j$ ($1 \le i \le n, 1 \le j \le k$) give pairwise different residues modulo nk?

AoPS Online AoPS Academy AoPS Catery

Art of Problem Solving is an ACS WASC Accredited School.