AoPS Community

www.artofproblemsolving.com/community/c103158
by randomusername

1 Let $N>1$ and let $a_{1}, a_{2}, \ldots, a_{N}$ be nonnegative reals with sum at most 500 . Prove that there exist integers $k \geq 1$ and $1=n_{0}<n_{1}<\cdots<n_{k}=N$ such that

$$
\sum_{i=1}^{k} n_{i} a_{n_{i-1}}<2005
$$

$2 \quad A$ and B play tennis. The player to first win at least four points and at least two more than the other player wins. We know that A gets a point each time with probability $p \leq \frac{1}{2}$, independent of the game so far. Prove that the probability that A wins is at most $2 p^{2}$.

3 We build a tower of 2×1 dominoes in the following way. First, we place 55 dominoes on the table such that they cover a 10×11 rectangle; this is the first story of the tower. We then build every new level with 55 domioes above the exact same 10×11 rectangle. The tower is called stable if for every non-lattice point of the 10×11 rectangle, we can find a domino that has an inner point above it. How many stories is the lowest stable tower?

