

## **AoPS Community**

www.artofproblemsolving.com/community/c103160

by randomusername

- **1** Draw a circle k with diameter  $\overline{EF}$ , and let its tangent in E be e. Consider all possible pairs  $A, B \in e$  for which  $E \in \overline{AB}$  and  $AE \cdot EB$  is a fixed constant. Define  $(A_1, B_1) = (AF \cap k, BF \cap k)$ . Prove that the segments  $\overline{A_1B_1}$  all concur in one point.
- **2** Prove that if a graph  $\mathcal{G}$  on  $n \ge 3$  vertices has a unique 3-coloring, then  $\mathcal{G}$  has at least 2n 3 edges.

(A graph is 3-colorable when there exists a coloring of its vertices with 3 colors such that no two vertices of the same color are connected by an edge. The graph can be 3-colored uniquely if there do not exist vertices u and v of the graph that are painted different colors in one 3-coloring, yet are colored the same in another.)

**3** Prove that the following inequality holds with the exception of finitely many positive integers *n*:

$$\sum_{i=1}^n \sum_{j=1}^n \gcd(i,j) > 4n^2.$$

AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱