AoPS Community

www.artofproblemsolving.com/community/c103160
by randomusername

1 Draw a circle k with diameter $\overline{E F}$, and let its tangent in E be e. Consider all possible pairs $A, B \in e$ for which $E \in \overline{A B}$ and $A E \cdot E B$ is a fixed constant. Define $\left(A_{1}, B_{1}\right)=(A F \cap k, B F \cap k)$. Prove that the segments $\overline{A_{1} B_{1}}$ all concur in one point.

2 Prove that if a graph \mathcal{G} on $n \geq 3$ vertices has a unique 3 -coloring, then \mathcal{G} has at least $2 n-3$ edges.
(A graph is 3 -colorable when there exists a coloring of its vertices with 3 colors such that no two vertices of the same color are connected by an edge. The graph can be 3-colored uniquely if there do not exist vertices u and v of the graph that are painted different colors in one 3 -coloring, yet are colored the same in another.)

3 Prove that the following inequality holds with the exception of finitely many positive integers n :

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} g c d(i, j)>4 n^{2}
$$

