www.artofproblemsolving.com/community/c103161
by randomusername

1 We have an acute-angled triangle which is not isosceles. We denote the orthocenter, the circumcenter and the incenter of it by H, O, I respectively. Prove that if a vertex of the triangle lies on the circle $H O I$, then there must be another vertex on this circle as well.

2 The Fibonacci sequence is defined as $f_{1}=f_{2}=1, f_{n+2}=f_{n+1}+f_{n}(n \in \mathbb{N})$. Suppose that a and b are positive integers such that $\frac{a}{b}$ lies between the two fractions $\frac{f_{n}}{f_{n-1}}$ and $\frac{f_{n+1}}{f_{n}}$. Show that $b \geq f_{n+1}$.

3 Prove that the edges of a complete graph with 3^{n} vertices can be partitioned into disjoint cycles of length 3.

