

AoPS Community

www.artofproblemsolving.com/community/c103161

by randomusername

- 1 We have an acute-angled triangle which is not isosceles. We denote the orthocenter, the circumcenter and the incenter of it by *H*, *O*, *I* respectively. Prove that if a vertex of the triangle lies on the circle *HOI*, then there must be another vertex on this circle as well.
- **2** The Fibonacci sequence is defined as $f_1 = f_2 = 1$, $f_{n+2} = f_{n+1} + f_n$ ($n \in \mathbb{N}$). Suppose that a and b are positive integers such that $\frac{a}{b}$ lies between the two fractions $\frac{f_n}{f_{n-1}}$ and $\frac{f_{n+1}}{f_n}$. Show that $b \ge f_{n+1}$.
- **3** Prove that the edges of a complete graph with 3^n vertices can be partitioned into disjoint cycles of length 3.

