AoPS Community

www.artofproblemsolving.com/community/c103163
by randomusername

1 Paint the grid points of $L=\{0,1, \ldots, n\}^{2}$ with red or green in such a way that every unit lattice square in L has exactly two red vertices. How many such colorings are possible?

2 Let $A B C$ be a non-equilateral triangle in the plane, and let T be a point different from its vertices. Define A_{T}, B_{T} and C_{T} as the points where lines $A T, B T$, and $C T$ meet the circumcircle of $A B C$. Prove that there are exactly two points P and Q in the plane for which the triangles $A_{P} B_{P} C_{P}$ and $A_{Q} B_{Q} C_{Q}$ are equilateral. Prove furthermore that line $P Q$ contains the circumcenter of $\triangle A B C$.

3 Let $k \geq 0$ be an integer and suppose the integers $a_{1}, a_{2}, \ldots, a_{n}$ give at least $2 k$ different residues upon division by $(n+k)$. Show that there are some a_{i} whose sum is divisible by $n+k$.

