AoPS Community

www.artofproblemsolving.com/community/c103176
by randomusername

1 Given in the plane is a lattice and a grid rectangle with sides parallel to the coordinate axes. We divide the rectangle into grid triangles with area $\frac{1}{2}$. Prove that the number of right angled triangles is at least twice as much as the shorter side of the rectangle.
(A grid polygon is a polygon such that both coordinates of each vertex is an integer.)
2 Consider a polynomial in n variables with real coefficients. We know that if every variable is ± 1, the value of the polynomial is positive, or negative if the number of -1 's is even, or odd, respectively. Prove that the degree of this polynomial is at least n.

3 Points A, B, C, D are such that no three of them are collinear. Let $E=A B \cap C D$ and $F=$ $B C \cap D A$. Let k_{1}, k_{2} and k_{3} denote the circles with diameter $\overline{A C}, \overline{B D}$ and $\overline{E F}$, respectively. Prove that either k_{1}, k_{2}, k_{3} pass through one point, or no two of them intersect.

