

AoPS Community

www.artofproblemsolving.com/community/c103176

by randomusername

1 Given in the plane is a lattice and a grid rectangle with sides parallel to the coordinate axes. We divide the rectangle into grid triangles with area $\frac{1}{2}$. Prove that the number of right angled triangles is at least twice as much as the shorter side of the rectangle.

(A grid polygon is a polygon such that both coordinates of each vertex is an integer.)

- **2** Consider a polynomial in n variables with real coefficients. We know that if every variable is ± 1 , the value of the polynomial is positive, or negative if the number of -1's is even, or odd, respectively. Prove that the degree of this polynomial is at least n.
- **3** Points *A*, *B*, *C*, *D* are such that no three of them are collinear. Let $E = AB \cap CD$ and $F = BC \cap DA$. Let k_1 , k_2 and k_3 denote the circles with diameter \overline{AC} , \overline{BD} and \overline{EF} , respectively. Prove that either k_1 , k_2 , k_3 pass through one point, or no two of them intersect.

AoPS Online 🟟 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.