AoPS Community

www.artofproblemsolving.com/community/c103178
by randomusername
$1 \quad$ Let a and b be positive integers. Prove that the numbers $a n^{2}+b$ and $a(n+1)^{2}+b$ are both perfect squares only for finitely many integers n.

2 Triangle $A B C$ is not isosceles. The incircle of $\triangle A B C$ touches the sides $B C, C A, A B$ in the points K, L, M. The parallel with $L M$ through B meets $K L$ at D, the parallel with $L M$ through C meets $K M$ at E.

Prove that $D E$ passes through the midpoint of $\overline{L M}$.
3 Let n be a fixed positive integer. Compute over \mathbb{R} the minimum of the following polynomial:

$$
f(x)=\sum_{t=0}^{2 n}(2 n+1-t) x^{t}
$$

