

AoPS Community

www.artofproblemsolving.com/community/c103189

by randomusername

- **1** Let p > 2 be a prime number and n a positive integer. Prove that pn^2 has at most one positive divisor d for which $n^2 + d$ is a square number.
- **2** The incenter of $\triangle A_1 A_2 A_3$ is *I*, and the center of the A_i -excircle is J_i (i = 1, 2, 3). Let B_i be the intersection point of side $A_{i+1}A_{i+2}$ and the bisector of $\angle A_{i+1}IA_{i+2}$ ($A_{i+3} := A_i \forall i$). Prove that the three lines $B_i J_i$ are concurrent.
- **3** We would like to give a present to one of 100 children. We do this by throwing a biased coin *k* times, after predetermining who wins in each possible outcome of this lottery.

Prove that we can choose the probability p of throwing heads, and the value of k such that, by distributing the 2^k different outcomes between the children in the right way, we can guarantee that each child has the same probability of winning.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.