AoPS Community

www.artofproblemsolving.com/community/c103189
by randomusername

1 Let $p>2$ be a prime number and n a positive integer. Prove that $p n^{2}$ has at most one positive divisor d for which $n^{2}+d$ is a square number.

2 The incenter of $\triangle A_{1} A_{2} A_{3}$ is I, and the center of the A_{i}-excircle is $J_{i}(i=1,2,3)$. Let B_{i} be the intersection point of side $A_{i+1} A_{i+2}$ and the bisector of $\angle A_{i+1} I A_{i+2}\left(A_{i+3}:=A_{i} \forall i\right)$. Prove that the three lines $B_{i} J_{i}$ are concurrent.

3 We would like to give a present to one of 100 children. We do this by throwing a biased coin k times, after predetermining who wins in each possible outcome of this lottery.

Prove that we can choose the probability p of throwing heads, and the value of k such that, by distributing the 2^{k} different outcomes between the children in the right way, we can guarantee that each child has the same probability of winning.

