AoPS Community

www.artofproblemsolving.com/community/c103194
by randomusername

1 In the plane, two intersecting lines a and b are given, along with a circle ω that has no common points with these lines. For any line $\ell \| b$, define $A=\ell \cap a$, and $\{B, C\}=\ell \cap \omega$ such that B is on segment $A C$. Construct the line ℓ such that the ratio $\frac{|B C|}{|A B|}$ is maximal.

2 For any positive integer n denote $S(n)$ the digital sum of n when represented in the decimal system. Find every positive integer M for which $S(M k)=S(M)$ holds for all integers $1 \leq k \leq$ M.

3 We play the following game in a Cartesian coordinate system in the plane. Given the input (x, y), in one step, we may move to the point $(x, y \pm 2 x)$ or to the point $(x \pm 2 y, y)$. There is also an additional rule: it is not allowed to make two steps that lead back to the same point (i.e, to step backwards).

Prove that starting from the point $(1 ; \sqrt{2})$, we cannot return to it in finitely many steps.

