## AoPS Community

www.artofproblemsolving.com/community/c103195
by randomusername

1 Prove that if there exists a point $P$ inside the convex quadrilateral $A B C D$ such that the triangles $P A B, P B C, P C D, P D A$ have the same area, then one of the diagonals of $A B C D$ bisects the area of the quadrilateral.

2 Set $T \subset\{1,2, \ldots, n\}^{3}$ has the property that for any two triplets $(a, b, c)$ and $(x, y, z)$ in $T$, we have $a<b<c$, and also, we know that at most one of the equalities $a=x, b=y, c=z$ holds. Maximize $|T|$.

3 Consider the convex lattice quadrilateral $P Q R S$ whose diagonals intersect at $E$. Prove that if $\angle P+\angle Q<180^{\circ}$, then the $\triangle P Q E$ contains inside it or on one of its sides a lattice point other than $P$ and $Q$.

