AoPS Community

www.artofproblemsolving.com/community/c103197
by randomusername

1 Any two members of a club with $3 n+1$ people plays ping-pong, tennis or chess with each other. Everyone has exactly n partners who plays ping-pong, n who play tennis and n who play chess.

Prove that we can choose three members of the club who play three different games amongst each other.

2 Let $n>2$ be a positive integer. Find the largest value h and the smallest value H for which

$$
h<\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{2}}{a_{2}+a_{3}}+\cdots+\frac{a_{n}}{a_{n}+a_{1}}<H
$$

holds for any positive reals a_{1}, \ldots, a_{n}.
$3 \quad \mathrm{~A}$ and B plays the following game: they choose randomly k integers from $\{1,2, \ldots, 100\}$; if their sum is even, A wins, else B wins. For what values of k does A and B have the same chance of winning?

