AoPS Community

www.artofproblemsolving.com/community/c103199
by randomusername

1 We have triangulated a convex $(n+1)$-gon $P_{0} P_{1} \ldots P_{n}$ (i.e., divided it into $n-1$ triangles with $n-2$ non-intersecting diagonals). Prove that the resulting triangles can be labelled with the numbers $1,2, \ldots, n-1$ such that for any $i \in\{1,2, \ldots, n-1\}, P_{i}$ is a vertex of the triangle with label i.

2 For every $n \in \mathbb{N}$, define the power sum of n as follows. For every prime divisor p of n, consider the largest positive integer k for which $p^{k} \leq n$, and sum up all the $p^{k \prime}$ s. (For instance, the power sum of 100 is $2^{6}+5^{2}=89$.) Prove that the power sum of n is larger than n for infinitely many positive integers n.

3 We reflected each vertex of a triangle on the opposite side. Prove that the area of the triangle formed by these three reflection points is smaller than the area of the initial triangle multiplied by five.

