AoPS Community

www.artofproblemsolving.com/community/c103433
by mcyoder, parmenides51

Individual -

1 For a natural number n, denote by $s(n)$ the sum of all positive divisors of n . Prove that for every $n>1$ the product $s(n-1) s(n) s(n+1)$ is even.

2 Each point on the boundary of a square has to be colored in one color. Consider all right triangles with the vertices on the boundary of the square. Determine the least number of colors for which there is a coloring such that no such triangle has all its vertices of the same color.
$3 \quad$ For all positive numbers a, b, c prove the inequality $2 \sqrt{b c+c a+a b} \leq \sqrt{3} \sqrt[3]{(b+c)(c+a)(a+b)}$.

4 Let k be a positive integer and u, v be real numbers. Consider $P(x)=\left(x-u^{k}\right)(x-u v)\left(x-v^{k}\right)=$ $x^{3}+a x^{2}+b x+c$.
(a) For $k=2$ prove that if a, b, c are rational then so is $u v$.
(b) Is that also true for $k=3$?
$5 \quad$ Given a circle k with center M and radius r, let $A B$ be a fixed diameter of k and let K be a fixed point on the segment $A M$. Denote by t the tangent of k at A. For any chord $C D$ through K other than $A B$, denote by P and \mathbf{Q} the intersection points of $B C$ and $B D$ with t, respectively. Prove that $A P \cdot A Q$ does not depend on $C D$.
$6 \quad$ A function $f: Z \rightarrow Z$ has the following properties: $f(92+x)=f(92-x) f(19 \cdot 92+x)=$ $f(19 \cdot 92-x)(19 \cdot 92=1748) f(1992+x)=f(1992-x)$
for all integers x. Can all positive divisors of 92 occur as values of f ?

Team -

7 Consider triangles $A B C$ in space.
(a) What condition must the angles $\angle A, \angle B, \angle C$ of $\triangle A B C$ fulfill in order that there is a point P in space such that $\angle A P B, \angle B P C, \angle C P A$ are right angles?
(b) Let d be the longest of the edges $P A, P B, P C$ and let h be the longest altitude of $\triangle A B C$. Show that $\frac{1}{3} \sqrt{6} h \leq d \leq h$.
$8 \quad$ Let $n \geq 3$ be a given integer. Nonzero real numbers a_{1}, \ldots, a_{n} satisfy. $\frac{-a_{1}-a_{2}+a_{3}+\ldots a_{n}}{a_{1}}=\frac{a_{1}-a_{2}-a_{3}+a_{4}+\ldots a_{n}}{a_{2}}=$ $\ldots=\frac{a_{1}+\ldots+a_{n-2}-a_{n-1}-a_{n}}{a_{n-1}}=\frac{-a_{1}+a_{2}+\ldots+a_{n-1}-a_{n}}{a_{n}}$
What values can be taken by the product $\frac{a_{2}+a_{3}+\ldots a_{n}}{a_{1}} \cdot \frac{a_{1}+a_{3}+a_{4}+\ldots a_{n}}{a_{2}} \cdot \ldots \cdot \frac{+a_{1}+a_{2}+\ldots+a_{n-1}}{a_{n}}$?
$9 \quad$ Given an integer $n>1$, consider words composed of n letters A and n letters B. A word $X_{1} \ldots X_{2 n}$ is said to belong to set $R(n)$ (respectively, $S(n)$) if no initial segment (respectively, exactly one initial segment) $X_{1} \ldots X_{k}$ with $1 \leq k<2 n$ consists of equally many letters A and B. If $r(n)$ and $s(n)$ denote the cardinalities of $R(n)$ and $S(n)$ respectively, compute $s(n) / r(n)$.

