

AoPS Community

1992 Austrian-Polish Competition

www.artofproblemsolving.com/community/c103433 by mcyoder, parmenides51

Individual -

1	For a natural number <i>n</i> , denote by $s(n)$ the sum of all positive divisors of n. Prove that for every $n > 1$ the product $s(n-1)s(n)s(n+1)$ is even.
2	Each point on the boundary of a square has to be colored in one color. Consider all right trian- gles with the vertices on the boundary of the square. Determine the least number of colors for which there is a coloring such that no such triangle has all its vertices of the same color.
3	For all positive numbers a, b, c prove the inequality $2\sqrt{bc + ca + ab} \le \sqrt{3}\sqrt[3]{(b+c)(c+a)(a+b)}$.
4	Let k be a positive integer and u, v be real numbers. Consider $P(x) = (x - u^k)(x - uv)(x - v^k) = x^3 + ax^2 + bx + c$. (a) For $k = 2$ prove that if a, b, c are rational then so is uv . (b) Is that also true for $k = 3$?
5	Given a circle k with center M and radius r , let AB be a fixed diameter of k and let K be a fixed point on the segment AM . Denote by t the tangent of k at A . For any chord CD through K other than AB , denote by P and Q the intersection points of BC and BD with t , respectively. Prove that $AP \cdot AQ$ does not depend on CD .
6	A function $f: Z \to Z$ has the following properties: $f(92 + x) = f(92 - x) f(19 \cdot 92 + x) = f(19 \cdot 92 - x) (19 \cdot 92 = 1748) f(1992 + x) = f(1992 - x)$ for all integers x . Can all positive divisors of 92 occur as values of f?
Team	-
7	Consider triangles ABC in space. (a) What condition must the angles $\angle A, \angle B, \angle C$ of $\triangle ABC$ fulfill in order that there is a point P in space such that $\angle APB, \angle BPC, \angle CPA$ are right angles? (b) Let d be the longest of the edges PA, PB, PC and let h be the longest altitude of $\triangle ABC$. Show that $\frac{1}{3}\sqrt{6}h \le d \le h$.
8	Let $n \ge 3$ be a given integer. Nonzero real numbers $a_1,, a_n$ satisfy: $\frac{-a_1 - a_2 + a_3 +a_n}{a_1} = \frac{a_1 - a_2 - a_3 + a_4 +a_n}{a_2}$ $ = \frac{a_1 + + a_{n-2} - a_{n-1} - a_n}{a_{n-1}} = \frac{-a_1 + a_2 + + a_{n-1} - a_n}{a_n}$ What values can be taken by the product $\frac{a_2 + a_3 +a_n}{a_1} \cdot \frac{a_1 + a_3 + a_4 +a_n}{a_2} \cdot \cdot \frac{+a_1 + a_2 + + a_{n-1}}{a_n}$?

AoPS Community

9 Given an integer n > 1, consider words composed of n letters A and n letters B. A word $X_1...X_{2n}$ is said to belong to set R(n) (respectively, S(n)) if no initial segment (respectively, exactly one initial segment) $X_1...X_k$ with $1 \le k < 2n$ consists of equally many letters A and B. If r(n) and s(n) denote the cardinalities of R(n) and S(n) respectively, compute s(n)/r(n).

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.