AoPS Community

www.artofproblemsolving.com/community/c103435
by randomusername, Yimin Ge, Leon, Pascual2005

- Individual Competition, Day 1

1 Determine the number of positive integers a, so that there exist nonnegative integers $x_{0}, x_{1}, \ldots, x_{2001}$ which satisfy the equation

$$
a^{x_{0}}=\sum_{i=1}^{2001} a^{x_{i}}
$$

2 Let n be a positive integer greater than 2 . Solve in nonnegative real numbers the following system of equations

$$
x_{k}+x_{k+1}=x_{k+2}^{2} \quad, \quad k=1,2, \cdots, n
$$

where $x_{n+1}=x_{1}$ and $x_{n+2}=x_{2}$.
3 Let a, b, c be sides of a triangle. Prove that

$$
2<\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^{3}+b^{3}+c^{3}}{a b c} \leq 3
$$

- Individual Competition, Day 2

4 Prove that if a, b, c, d are lengths of the successive sides of a quadrangle (not necessarily convex) with the area equal to S, then the following inequality holds

$$
S \leq \frac{1}{2}(a c+b d)
$$

For which quadrangles does the inequality become equality?
5 The fields of the 8×8 chessboard are numbered from 1 to 64 in the following manner. For $i=1,2, \cdots, 63$ the field numbered by $i+1$ can be reached from the field numbered by i by one move of the knight. Let us choose positive real numbers $x_{1}, x_{2}, \cdots, x_{64}$. For each white field numbered by i define the number $y_{i}=1+x_{i}^{2}-\sqrt[3]{x_{i-1}^{2} x_{i+1}}$ and for each black field numbered by j define the number $y_{j}=1+x_{j}^{2}-\sqrt[3]{x_{j-1} x_{j+1}^{2}}$ where $x_{0}=x_{64}$ and $x_{1}=x_{65}$. Prove that

$$
\sum_{i=1}^{64} y_{i} \geq 48
$$

$6 \quad$ Let k be a fixed positive integer. Consider the sequence definited by

$$
a_{0}=1, a_{n+1}=a_{n}+\left\lfloor\sqrt[k]{a_{n}}\right\rfloor, n=0,1, \cdots
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x. For each k find the set A_{k} containing all integer values of the sequence $\left(\sqrt[k]{a_{n}}\right)_{n \geq 0}$.

- Team Competition

7 Consider the set A containing all positive integers whose decimal expansion contains no 0 , and whose sum $S(N)$ of the digits divides N.
(a) Prove that there exist infinitely many elements in A whose decimal expansion contains each digit the same number of times as each other digit.
(b) Explain that for each positive integer k there exist an element in A having exactly k digits.

8 The prism with the regular octagonal base and with all edges of the length equal to 1 is given. The points $M_{1}, M_{2}, \cdots, M_{10}$ are the midpoints of all the faces of the prism. For the point P from the inside of the prism denote by P_{i} the intersection point (not equal to M_{i}) of the line $M_{i} P$ with the surface of the prism. Assume that the point P is so chosen that all associated with P points P_{i} do not belong to any edge of the prism and on each face lies exactly one point P_{i}. Prove that

$$
\sum_{i=1}^{10} \frac{M_{i} P}{M_{i} P_{i}}=5
$$

9 Let A be a set with $2 n$ elements, and let $A_{1}, A_{2} \ldots, A_{m}$ be subsets of A e ach one with n elements. Find the greatest possible m, such that it is possible to select these m subsets in such a way that the intersection of any 3 of them has at most one element.

10 The sequence $a_{1}, a_{2}, \cdots, a_{2010}$ has the following properties:
(1) each sum of the 20 successive values of the sequence is nonnegative,
(2) $\left|a_{i} a_{i+1}\right| \leq 1$ for $i=1,2, \cdots, 2009$.

Determine the maximal value of the expression $\sum_{i=1}^{2010} a_{i}$.

- Source: http://www.artofproblemsolving.com/community/c6h111439p633033.

