

AoPS Community

2001 Austrian-Polish Competition

www.artofproblemsolving.com/community/c103435

by randomusername, Yimin Ge, Leon, Pascual2005

- Individual Competition, Day 1
- 1 Determine the number of positive integers a, so that there exist nonnegative integers $x_0, x_1, \ldots, x_{2001}$ which satisfy the equation

$$a^{x_0} = \sum_{i=1}^{2001} a^{x_i}$$

2 Let *n* be a positive integer greater than 2. Solve in nonnegative real numbers the following system of equations

$$x_k + x_{k+1} = x_{k+2}^2$$
, $k = 1, 2, \cdots, n$

where $x_{n+1} = x_1$ and $x_{n+2} = x_2$.

3 Let *a*, *b*, *c* be sides of a triangle. Prove that

$$2 < \frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} - \frac{a^3 + b^3 + c^3}{abc} \le 3$$

- Individual Competition, Day 2
- **4** Prove that if *a*, *b*, *c*, *d* are lengths of the successive sides of a quadrangle (not necessarily convex) with the area equal to *S*, then the following inequality holds

$$S \le \frac{1}{2}(ac+bd).$$

For which quadrangles does the inequality become equality?

5 The fields of the 8×8 chessboard are numbered from 1 to 64 in the following manner. For $i = 1, 2, \dots, 63$ the field numbered by i + 1 can be reached from the field numbered by i by one move of the knight. Let us choose positive real numbers x_1, x_2, \dots, x_{64} . For each white field numbered by i define the number $y_i = 1 + x_i^2 - \sqrt[3]{x_{i-1}^2 x_{i+1}}}$ and for each black field numbered by j define the number $y_j = 1 + x_j^2 - \sqrt[3]{x_{j-1} x_{j+1}^2}}$ where $x_0 = x_{64}$ and $x_1 = x_{65}$. Prove that

$$\sum_{i=1}^{64} y_i \geq 48$$

2

© 2019 AoPS Incorporated

6	Let k be a fixed positive integer. Consider the sequence definited by
	$a_0 = 1$, $a_{n+1} = a_n + \lfloor \sqrt[k]{a_n} \rfloor$, $n = 0, 1, \cdots$
	where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x . For each k find the set A_k containing all integer values of the sequence $(\sqrt[k]{a_n})_{n \ge 0}$.
-	Team Competition
7	Consider the set A containing all positive integers whose decimal expansion contains no 0, and whose sum $S(N)$ of the digits divides N .
	(a) Prove that there exist infinitely many elements in A whose decimal expansion contains each digit the same number of times as each other digit.
	(b) Explain that for each positive integer k there exist an element in A having exactly k digits.
8	The prism with the regular octagonal base and with all edges of the length equal to 1 is given. The points M_1, M_2, \dots, M_{10} are the midpoints of all the faces of the prism. For the point P from the inside of the prism denote by P_i the intersection point (not equal to M_i) of the line $M_i P$ with the surface of the prism. Assume that the point P is so chosen that all associated with P points P_i do not belong to any edge of the prism and on each face lies exactly one point P_i . Prove that $\sum_{i=1}^{10} \frac{M_i P}{M_i P_i} = 5$
9	Let A be a set with $2n$ elements, and let A_1, A_2, A_m be subsets of Ae ach one with n elements. Find the greatest possible m, such that it is possible to select these m subsets in such a way that the intersection of any 3 of them has at most one element.
10	The sequence $a_1, a_2, \cdots, a_{2010}$ has the following properties:
	(1) each sum of the 20 successive values of the sequence is nonnegative,
	(2) $ a_i a_{i+1} \le 1$ for $i = 1, 2, \cdots, 2009$.
	Determine the maximal value of the expression $\sum_{i=1}^{2010} a_i$.
	Source: http://www.artofproblemsolving.com/community/c6b1111/30p633032
—	oouroe. http://www.artorproblemoorving.com/community/commit409p000000.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.