AoPS Community

www.artofproblemsolving.com/community/c103440
by randomusername, orl

- Individual Competition, Day 1, June 24th 2004

1 Let $S(n)$ be the sum of digits for any positive integer n (in decimal notation).
Let $N=\sum_{k=10^{2003}}^{10^{2004}-1} S(k)$. Determine $S(N)$.
2 In a triangle $A B C$ let D be the intersection of the angle bisector of γ, angle at C, with the side $A B$. And let F be the area of the triangle $A B C$. Prove the following inequality:

$$
2 \cdot F \cdot\left(\frac{1}{A D}-\frac{1}{B D}\right) \leq A B .
$$

3 Solve the following system of equations in \mathbb{R} where all square roots are non-negative:
$a-\sqrt{1-b^{2}}+\sqrt{1-c^{2}}=d$
$b-\sqrt{1-c^{2}}+\sqrt{1-d^{2}}=a$
$c-\sqrt{1-d^{2}}+\sqrt{1-a^{2}}=b$
$d-\sqrt{1-a^{2}}+\sqrt{1-b^{2}}=c$

- Individual Competition, Day 2, June 25th 2004
$4 \quad$ Determine all $n \in \mathbb{N}$ for which $n^{10}+n^{5}+1$ is prime.
5 Determine all n for which the system with of equations can be solved in \mathbb{R} :

$$
\sum_{k=1}^{n} x_{k}=27
$$

and

$$
\prod_{k=1}^{n} x_{k}=\left(\frac{3}{2}\right)^{24}
$$

6 For $n=2^{m}$ (m is a positive integer) consider the set $M(n)=\{1,2, \ldots, n\}$ of natural numbers. Prove that there exists an order $a_{1}, a_{2}, \ldots, a_{n}$ of the elements of $\mathbf{M}(\mathbf{n})$, so that for all $1 \leq i<j<$ $k \leq n$ holds: $a_{j}-a_{i} \neq a_{k}-a_{j}$.

- \quad Team Competition, June 26th 2004

7 Determine all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ which satisfy the following condition for all pairs (x, y) of relatively prime positive integers:

$$
f(x+y)=f(x+1)+f(y+1) .
$$

8 a.) Prove that for $n=4$ or $n \geq 6$ each triangle $A B C$ can be decomposed in n similar (not necessarily congruent) triangles.
b.) Show: An equilateral triangle can neither be composed in 3 nor 5 triangles.
c.) Is there a triangle $A B C$ which can be decomposed in 3 and 5 triangles, analogously to a.). Either give an example or prove that there is not such a triangle.

9 Given are the sequences

$$
\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right) ;\left(\ldots, b_{-2}, b_{-1}, b_{0}, b_{1}, b_{2}, \ldots\right) ;\left(\ldots, c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, \ldots\right)
$$

of positive real numbers. For each integer n the following inequalities hold:

$$
\begin{aligned}
& a_{n} \geq \frac{1}{2}\left(b_{n+1}+c_{n-1}\right) \\
& b_{n} \geq \frac{1}{2}\left(c_{n+1}+a_{n-1}\right) \\
& c_{n} \geq \frac{1}{2}\left(a_{n+1}+b_{n-1}\right)
\end{aligned}
$$

Determine $a_{2005}, b_{2005}, c_{2005}$, if $a_{0}=26, b_{0}=6, c_{0}=2004$.
10 For each polynomial $Q(x)$ let $M(Q)$ be the set of non-negative integers x with $0<Q(x)<2004$. We consider polynomials $P_{n}(x)$ of the form

$$
P_{n}(x)=x^{n}+a_{1} \cdot x^{n-1}+\ldots+a_{n-1} \cdot x+1
$$

with coefficients $a_{i} \in\{ \pm 1\}$ for $i=1,2, \ldots, n-1$.
For each $n=3^{k}, k>0$ determine:
a.) m_{n} which represents the maximum of elements in $M\left(P_{n}\right)$ for all such polynomials $P_{n}(x)$
b.) all polynomials $P_{n}(x)$ for which $\left|M\left(P_{n}\right)\right|=m_{n}$.

- Source: http://www.artofproblemsolving.com/community/c6h49814p315884

