AoPS Community

www.artofproblemsolving.com/community/c103441
by randomusername

- Individual Competition, Day 1, June 30th 2005

1 For a convex n-gon P_{n}, we say that a convex quadrangle Q is a diagonal-quadrangle of P_{n}, if its vertices are vertices of P_{n} and its sides are diagonals of P_{n}. Let d_{n} be the number of diagonalquadrangles of a convex n-gon. Determine d_{n} for all $n \geq 8$.

2 Determine all polynomials P with integer coefficients satisfying

$$
P(P(P(P(P(x)))))=x^{28} \cdot P(P(x)) \quad \forall x \in \mathbb{R}
$$

3 Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be real numbers, which fulfill the following two conditions:
a) $0=a_{0} \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n}$.
b) For all $0 \leq i<j \leq n$ holds: $a_{j}-a_{i} \leq j-i$.

Prove that

$$
\left(\sum_{i=0}^{n} a_{i}\right)^{2} \geq \sum_{i=0}^{n} a_{i}^{3} .
$$

- Individual Competition, Day 2, July 1st 2005

4 Determine the smallest natural number $a \geq 2$ for which there exists a prime number p and a natural number $b \geq 2$ such that

$$
\frac{a^{p}-a}{p}=b^{2} .
$$

5 Given is a convex quadrilateral $A B C D$ with $A B=C D$. Draw the triangles $A B E$ and $C D F$ outside $A B C D$ so that $\angle A B E=\angle D C F$ and $\angle B A E=\angle F D C$. Prove that the midpoints of $\overline{A D}, \overline{B C}$ and $\overline{E F}$ are collinear.

6 Determine all monotone functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$, so that for all $x, y \in \mathbb{Z}$

$$
f\left(x^{2005}+y^{2005}\right)=(f(x))^{2005}+(f(y))^{2005}
$$

AoPS Community

- Team Competition, July 2nd 2005

7 For each natural number $n \geq 2$, solve the following system of equations in the integers $x_{1}, x_{2}, \ldots, x_{n}$:

$$
\left(n^{2}-n\right) x_{i}+\left(\prod_{j \neq i} x_{j}\right) S=n^{3}-n^{2}, \quad \forall 1 \leq i \leq n
$$

where

$$
S=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} .
$$

8 Given the sets $R_{m n}=\{(x, y) \mid x=0,1, \ldots, m ; y=0,1, \ldots, n\}$, consider functions $f: R_{m n} \rightarrow$ $\{-1,0,1\}$ with the following property: for each quadruple of points $A_{1}, A_{2}, A_{3}, A_{4} \in R_{m n}$ which form a square with side length $0<s<3$, we have

$$
f\left(A_{1}\right)+f\left(A_{2}\right)+f\left(A_{3}\right)+f\left(A_{4}\right)=0 .
$$

For each pair (m, n) of positive integers, determine $F(m, n)$, the number of such functions f on $R_{m n}$.
$9 \quad$ Consider the equation $x^{3}+y^{3}+z^{3}=2$.
a) Prove that it has infinitely many integer solutions x, y, z.
b) Determine all integer solutions x, y, z with $|x|,|y|,|z| \leq 28$.

10 Determine all pairs (k, n) of non-negative integers such that the following inequality holds $\forall x, y>0$:

$$
1+\frac{y^{n}}{x^{k}} \geq \frac{(1+y)^{n}}{(1+x)^{k}} .
$$

- Source: http://www.artofproblemsolving.com/community/c6h49814p319242.

