AoPS Community

www.artofproblemsolving.com/community/c103443
by mcyoder, Mathx, parmenides51, Konigsberg

Individual -

1 The distinct points $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$ all lie on the same side of the line $A B$. The six triangles $A B X_{i}$ are all similar. Show that the X_{i} lie on a circle.

2 Find all solutions in positive integers to $a^{A}=b^{B}=c^{C}=1990^{1990} a b c$, where $A=b^{c}, B=c^{a}, C=$ a^{b}.

3 Show that there are two real solutions to: $x+y^{2}+z^{4}=0 y+z^{2}+x^{4}=0 z+x^{2}+y^{5}=0$.
4 Find all solutions in positive integers to:

$$
\left\{\begin{array}{l}
x_{1}^{4}+14 x_{1} x_{2}+1=y_{1}^{4} \\
x_{2}^{4}+14 x_{2} x_{3}+1=y_{2}^{4} \\
\cdots \\
x_{n}^{4}+14 x_{n} x_{1}+1=y_{n}^{4}
\end{array}\right.
$$

5 Let $n>1$ be an integer and let $f_{1}, f_{2}, \ldots, f_{n}$! be the n ! permutations of $1,2, \ldots, n$. (Each f_{i} is a bijective function from $\{1,2, \ldots, n\}$ to itself.) For each permutation f_{i}, let us define $S\left(f_{i}\right)=$ $\sum_{k=1}^{n}\left|f_{i}(k)-k\right|$. Find $\frac{1}{n!} \sum_{i=1}^{n!} S\left(f_{i}\right)$.
$6 \quad p(x)$ is a polynomial with integer coefficients. The sequence of integers $a_{1}, a_{2}, \ldots, a_{n}$ (where $n>2)$ satisfies $a_{2}=p\left(a_{1}\right), a_{3}=p\left(a_{2}\right), \ldots, a_{n}=p\left(a_{n-1}\right), a_{1}=p\left(a_{n}\right)$. Show that $a_{1}=a_{3}$.

Team -

$7 \quad D_{n}$ is a set of domino pieces. For each pair of non-negative integers (a, b) with $a \leq b \leq n$, there is one domino, denoted $[a, b]$ or $[b, a]$ in D_{n}. A ring is a sequence of dominoes $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{k}, b_{k}\right]$ such that $b_{1}=a_{2}, b_{2}=a_{3}, \ldots, b_{k-1}=a_{k}$ and $b_{k}=a_{1}$. Show that if n is even there is a ring which uses all the pieces. Show that for n odd, at least $(n+1) / 2$ pieces are not used in any ring. For n odd, how many different sets of $(n+1) / 2$ are there, such that the pieces not in the set can form a ring?

8 We are given a supply of $a \times b$ tiles with a and b distinct positive integers. The tiles are to be used to tile a 28×48 rectangle. Find a, b such that the tile has the smallest possible area and there is only one possible tiling. (If there are two distinct tilings, one of which is a reflection of the
other, then we treat that as more than one possible tiling. Similarly for other symmetries.) Find a, b such that the tile has the largest possible area and there is more than one possible tiling.
$9 a_{1}, a_{2}, \ldots, a_{n}$ is a sequence of integers such that every non-empty subsequence has non-zero sum. Show that we can partition the positive integers into a finite number of sets such that if x_{i} all belong to the same set, then $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}$ is non-zero.

