AoPS Community

VMO 2020

www.artofproblemsolving.com/community/c1036575
by Tintarn, trito 11, DoThinh2001

- Day 1

1 Let a sequence $\left(x_{n}\right)$ satisfy : $x_{1}=1$ and $x_{n+1}=x_{n}+3 \sqrt{x_{n}}+\frac{n}{\sqrt{x_{n}}}, \forall \mathbf{n} \geq 1$
a) Prove $\lim \frac{n}{x_{n}}=0$
b) Find $\lim \frac{n^{2}}{x_{n}}$

2 a)Let $a, b, c \in \mathbb{R}$ and $a^{2}+b^{2}+c^{2}=1$. Prove that: $|a-b|+|b-c|+|c-a| \leq 2 \sqrt{2}$
b) Let $a_{1}, a_{2}, . . a_{2019} \in \mathbb{R}$ and $\sum_{i=1}^{2019} a_{i}^{2}=1$. Find the maximum of: $S=\left|a_{1}-a_{2}\right|+\left|a_{2}-a_{3}\right|+\ldots+$ $\left|a_{2019}-a_{1}\right|$

3 Let a sequence $\left(a_{n}\right)$ satisfy: $a_{1}=5, a_{2}=13$ and $a_{n+1}=5 a_{n}-6 a_{n-1}, \forall n \geq 2$
a) Prove that $\left(a_{n}, a_{n+1}\right)=1, \forall n \geq 1$
b) Prove that: $2^{k+1} \mid p-1 \forall k \in \mathbb{N}$, if p is a prime factor of $a_{2^{k}}$

4 Let a non-isosceles acute triangle ABC with the circumscribed cycle (0) and the orthocenter H. D, E, F are the reflection of O in the lines $B C, C A$ and $A B$.
a) H_{a} is the reflection of H in $\mathrm{BC}, \mathrm{A}^{\prime}$ is the reflection of A at O and O_{a} is the center of (BOC). Prove that $H_{a} D$ and OA^{\prime} intersect on (0).
b) Let X is a point satisfy $A X D A^{\prime}$ is a parallelogram. Prove that (AHX), (ABF), (ACE) have a comom point different than A

- Day 2

5 Let a system of equations: $\left\{\begin{array}{l}x-a y=y z \\ y-a z=z x \\ z-a x=x y\end{array}\right.$
a) Find (x, y, z) if $a=0$
b)Prove that: the system have 5 distinct roots $\forall \mathrm{a}_{\mathrm{¿}} 1, \mathrm{a} \in \mathbb{R}$.

6 Let a non-isosceles acute triangle $A B C$ with tha attitude $A D, B E, C F$ and the orthocenter $\mathrm{H} . \mathrm{DE}$, DF intersect (AD) at M, N respectively. $P \in A B, Q \in A C$ satisfy $N P \perp A B, M Q \perp A C$
a) Prove that EF is the tangent line of (APQ)
b) Let T be the tangency point of (APQ) with $E F, D T \cap M N=K$. L is the reflection of A in $M N$. Prove that MN, EF ,(DLK) pass through a piont
$7 \quad$ Given a positive integer $n>1$. Denote T a set that contains all ordered sets $(x ; y ; z)$ such that
x, y, z are all distinct positive integers and $1 \leq x, y, z \leq 2 n$. Also, a set A containing ordered sets $(u ; v)$ is called "connected" with T if for every $(x ; y ; z) \in T$ then $\{(x ; y),(x ; z),(y ; z)\} \cap A \neq$ \varnothing.
a) Find the number of elements of set T.
b) Prove that there exists a set "connected" with T that has exactly $2 n(n-1)$ elements.
c) Prove that every set "connected" with T has at least $2 n(n-1)$ elements.

