

AoPS Community

2020 Vietnam National Olympiad

VMO 2020

www.artofproblemsolving.com/community/c1036575 by Tintarn, trito11, DoThinh2001

-	Day 1
1	Let a sequence (x_n) satisfy $x_1 = 1$ and $x_{n+1} = x_n + 3\sqrt{x_n} + \frac{n}{\sqrt{x_n}}$, $\forall n \ge 1$ a) Prove $\lim \frac{n}{x_n} = 0$ b) Find $\lim \frac{n^2}{x_n}$
2	a)Let $a, b, c \in \mathbb{R}$ and $a^2 + b^2 + c^2 = 1$. Prove that: $ a - b + b - c + c - a \le 2\sqrt{2}$ b) Let $a_1, a_2,a_{2019} \in \mathbb{R}$ and $\sum_{i=1}^{2019} a_i^2 = 1$. Find the maximum of: $S = a_1 - a_2 + a_2 - a_3 + + a_{2019} - a_1 $
3	Let a sequence (a_n) satisfy: $a_1 = 5$, $a_2 = 13$ and $a_{n+1} = 5a_n - 6a_{n-1}$, $\forall n \ge 2$ a) Prove that $(a_n, a_{n+1}) = 1$, $\forall n \ge 1$ b) Prove that: $2^{k+1} p - 1\forall k \in \mathbb{N}$, if p is a prime factor of a_{2^k}
4	Let a non-isosceles acute triangle ABC with the circumscribed cycle (O) and the orthocenter H. D, E, F are the reflection of O in the lines BC, CA and AB. a) H_a is the reflection of H in BC, A' is the reflection of A at O and O_a is the center of (BOC). Prove that H_aD and OA' intersect on (O). b) Let X is a point satisfy AXDA' is a parallelogram. Prove that (AHX), (ABF), (ACE) have a comom point different than A
-	Day 2
5	Let a system of equations: $\begin{cases} x - ay = yz \\ y - az = zx \\ z - ax = xy \end{cases}$ a)Find (x,y,z) if a=0 b)Prove that: the system have 5 distinct roots $\forall a \ge 1, a \in \mathbb{R}$.
6	Let a non-isosceles acute triangle ABC with tha attitude AD, BE, CF and the orthocenter H. DE, DF intersect (AD) at M, N respectively. $P \in AB, Q \in AC$ satisfy $NP \perp AB, MQ \perp AC$ a) Prove that EF is the tangent line of (APQ) b) Let T be the tangency point of (APQ) with EF, DT \cap MN=K. L is the reflection of A in MN. Prove that MN, EF ,(DLK) pass through a piont
7	Given a positive integer $n > 1$. Denote T a set that contains all ordered sets $(x; y; z)$ such that

AoPS Community

2020 Vietnam National Olympiad

x, y, z are all distinct positive integers and $1 \le x, y, z \le 2n$. Also, a set A containing ordered sets (u; v) is called *"connected"* with T if for every $(x; y; z) \in T$ then $\{(x; y), (x; z), (y; z)\} \cap A \ne \emptyset$.

a) Find the number of elements of set *T*.

b) Prove that there exists a set "connected" with T that has exactly 2n(n-1) elements.

c) Prove that every set "connected" with T has at least 2n(n-1) elements.

Act of Problem Solving is an ACS WASC Accredited School.