Art of Problem Solving

AoPS Community

2019 Gulf Math Olympiad

7th Gulf Mathematical Olympiad 2019

www.artofproblemsolving.com/community/c1036682
by parmenides51

1 Let $A B C D$ be a trapezium (trapezoid) with $A D$ parallel to $B C$ and J be the intersection of the diagonals $A C$ and $B D$. Point P a chosen on the side $B C$ such that the distance from C to the line $A P$ is equal to the distance from B to the line $D P$.

The following three questions 1,2 and 3 are independent, so that a condition in one question does not apply in another question.
1.Suppose that $\operatorname{Area}(\triangle A J B)=6$ and that $\operatorname{Area}(\triangle B J C)=9$. Determine $\operatorname{Area}(\triangle A P D)$.
2. Find all points Q on the plane of the trapezium such that $\operatorname{Area}(\triangle A Q B)=\operatorname{Area}(\triangle D Q C)$.
3. Prove that $P J$ is the angle bisector of $\angle A P D$.

2 1. Find N, the smallest positive multiple of 45 such that all of its digits are either 7 or 0 .
2. Find M, the smallest positive multiple of 32 such that all of its digits are either 6 or 1 .
3. How many elements of the set $\{1,2,3, \ldots, 1441\}$ have a positive multiple such that all of its digits are either 5 or 2?

3 Consider the set $S=\{1,2,3, \ldots, 1441\}$.

1. Nora counts thoses subsets of S having exactly two elements, the sum of which is even. Rania counts those subsets of S having exactly two elements, the sum of which is odd. Determine the numbers counted by Nora and Rania.
2. Let t be the number of subsets of S which have at least two elements and the product of the elements is even. Determine the greatest power of 2 which divides t.
3. Ahmad counts the subsets of S having 77 elements such that in each subset the sum of the elements is even. Bushra counts the subsets of S having 77 elements such that in each subset the sum of the elements is odd. Whose number is bigger? Determine the difference between the numbers found by Ahmad and Bushra.

4 Consider the sequence $\left(a_{n}\right)_{n \geq 1}$ defined by $a_{n}=n$ for $n \in\{1,2,3.4,5,6\}$, and for $n \geq 7$:

$$
a_{n}=\left\lfloor\frac{a_{1}+a_{2}+\ldots+a_{n-1}}{2}\right\rfloor
$$

where $\lfloor x\rfloor$ is the greatest integer less than or equal to x. For example : $\lfloor 2.4\rfloor=2,\lfloor 3\rfloor=3$ and $\lfloor\pi\rfloor=3$.

For all integers $n \geq 2$, let $S_{n}=\left\{a_{1}, a_{1}, \ldots, a_{n}\right\}-\left\{r_{n}\right\}$ where r_{n} is the remainder when $a_{1}+a_{2}+$ $\ldots+a_{n}$ is divided by 3 . The minus - denotes the "remove it if it is there" notation. For example : $S_{4}=2,3,4$ because $r_{4}=1$ so 1 is removed from $\{1,2,3,4\}$. However $S_{5}=\{1,2,3,4,5\}$ betawe $r_{5}=0$ and 0 is not in the set $\{1,2,3,4,5\}$.

1. Determine S_{7}, S_{8}, S_{9} and S_{10}.
2. We say that a set S_{n} for $n \geq 6$ is well-balanced if it can be partitioned into three pairwise disjoint subsets with equal sum. For example : $S_{6}=\{1,2,3,4,5,6\}=\{1,6\} \cup\{2,5\} \cup\{3,4\}$ and $1+6=2+5=3+4$. Prove that S_{7}, S_{8}, S_{9} and S_{10} are well-balanced.
3. Is the set S_{2019} well-balanced? Justify your answer.
