AoPS Community

2019 Rioplatense Mathematical Olympiad, Level 3

Rioplatense Mathematical Olympiad, Level 32019

www.artofproblemsolving.com/community/c1036908
by parmenides51, mathisreal

- Day 1

1 Let $A B C D E F$ be a regular hexagon, in the sides $A B, C D, D E$ and $F A$ we choose four points P, Q, R and S respectively, such that $P Q R S$ is a square. Prove that $P Q$ and $B C$ are parallel.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(f(x)^{2}+f\left(y^{2}\right)\right)=(x-y) f(x-f(y))$
3 In the dog dictionary the words are any sequence of letters A and U for example $A A, U A U$ and $A U A U$. For each word, your "profundity" will be the quantity of subwords we can obtain by the removal of some letters.
For each positive integer n, determine the largest "profundity" of word, in dog dictionary, can have with n letters.
Note: The word $A A U U A$ has "profundity" 14 because your subwords are $A, U, A U, A A, U U, U A, A U U, U U A$

- Day 2

4 Prove that there are infinite triples (a, b, c) of positive integers $a, b, c>1, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=$ $\operatorname{gcd}(c, a)=1$ such that $a+b+c$ divides $a^{b}+b^{c}+c^{a}$.
$5 \quad$ Let $A B C$ be a triangle with $A B<A C$ and circuncircle ω. Let M and N be the midpoints of $A C$ and $A B$ respectively and G is the centroid of $A B C$. Let P be the foot of perpendicular of A to the line $B C$, and the point Q is the intersection of $G P$ and $\omega(Q, P, G$ are collinears in this order). The line $Q M$ cuts ω in M_{1} and the line $Q N$ cuts ω in N_{1}. If K is the intersection of $B M_{1}$ and $C N_{1}$ prove that P, G and K are collinears.

6 Let $\alpha>1$ be a real number such that the sequence $a_{n}=\alpha\left\lfloor\alpha^{n}\right\rfloor-\left\lfloor\alpha^{n+1}\right\rfloor$, with $n \geq 1$, is periodic, that is, there is a positive integer p such that $a_{n+p}=a_{n}$ for all n. Prove that α is an integer.

