AoPS Community

Mathematical Olympiad 2019

www.artofproblemsolving.com/community/c1041013
by parmenides51

1 Find all functions $f: R \rightarrow R$ such that $f(2 x y)+f(f(x+y))=x f(y)+y f(x)+f(x+y)$ for all real numbers x and y.

2 Twelve students participated in a theater festival consisting of n different performances. Suppose there were six students in each performance, and each pair of performances had at most two students in common. Determine the largest possible value of n.

3 Find all triples (a, b, c) of positive integers such that $a^{2}+b^{2}=n \cdot l c m(a, b)+n^{2} b^{2}+c^{2}=$ $n \cdot l c m(b, c)+n^{2} c^{2}+a^{2}=n \cdot l c m(c, a)+n^{2}$
for some positive integer n.
4 In acute triangle $A B C$ with $\angle B A C>\angle B C A$, let P be the point on side $B C$ such that $\angle P A B=$ $\angle B C A$. The circumcircle of triangle $A P B$ meets side $A C$ again at Q. Point D lies on segment $A P$ such that $\angle Q D C=\angle C A P$.
Point E lies on line $B D$ such that $C E=C D$. The circumcircle of triangle $C Q E$ meets segment $C D$ again at F, and line $Q F$ meets side $B C$ at G. Show that B, D, F, and G are concyclic

