Art of Problem Solving

AoPS Community

Dutch IMO TST Team Selection Test 2012

www.artofproblemsolving.com/community/c1043644
by parmenides51, N.T.TUAN

- Day 1

1 A line, which passes through the incentre I of the triangle $A B C$, meets its sides $A B$ and $B C$ at the points M and N respectively. The triangle $B M N$ is acute. The points K, L are chosen on the side $A C$ such that $\angle I L A=\angle I M B$ and $\angle K C=\angle I N B$. Prove that $A M+K L+C N=A C$. S. Berlov

2 Let a, b, c and d be positive real numbers. Prove that

$$
\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b} \geq 0
$$

3 Determine all positive integers that cannot be written as $\frac{a}{b}+\frac{a+1}{b+1}$ where a and b are positive integers.

4 Let n be a positive integer divisible by 4 . We consider the permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$ having the following property. for each j we have $a_{i}+j=n+1$ where $i=a_{j}$. Prove that there are exactly $\frac{\left(\frac{1}{2} n\right)!}{\left(\frac{1}{4} n\right)!}$ such permutations.

5 Let Γ be the circumcircle of the acute triangle $A B C$. The angle bisector of angle $A B C$ intersects $A C$ in the point B_{1} and the short arc $A C$ of Γ in the point P. The line through B_{1} perpendicular to $B C$ intersects the short arc $B C$ of Γ in K. The line through B perpendicular to $A K$ intersects $A C$ in L. Prove that K, L and P lie on a line.

```
- Day 2
```

1 For all positive integers a and b, we de ne $a @ b=\frac{a-b}{g c d(a, b)}$.
Show that for every integer $n>1$, the following holds: n is a prime power if and only if for all positive integers m such that $m<n$, it holds that $\operatorname{gcd}(n, n @ m)=1$.

2 There are two boxes containing balls. One of them contains m balls, and the other contains n balls, where $m, n>0$. Two actions are permitted:
(i) Remove an equal number of balls from both boxes.
(ii) Increase the number of balls in one of the boxes by a factor k.

Is it possible to remove all of the balls from both boxes with just these two actions,

1. if $k=2$?
2. if $k=3$?

3 Determine all pairs (x, y) of positive integers satisfying $x+y+1 \mid 2 x y$ and $x+y-1 \mid x^{2}+y^{2}-1$.
4 Let $\triangle A B C$ be a triangle. The angle bisector of $\angle C A B$ intersects $B C$ at L. On the interior of line segments $A C$ and $A B$, two points, M and N, respectively, are chosen in such a way that the lines $A L, B M$ and $C N$ are concurrent, and such that $\angle A M N=\angle A L B$. Prove that $\angle N M L=90^{\circ}$.
$5 \quad$ Find all functions $f: R \rightarrow R$ satisfying $f(x+x y+f(y))=\left(f(x)+\frac{1}{2}\right)\left(f(y)+\frac{1}{2}\right)$ for all $x, y \in R$.

