

AoPS Community

2014 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 2014
--

www.artofproblemsolving.com/community/c1044438 by parmenides51

-	Day 1
1	For each positive natural number n let $d(n)$ be the number of its divisors including 1 and n . For which positive natural numbers n , for every divisor t of n , that $d(t)$ is a divisor of $d(n)$?
2	Let <i>S</i> be the set of all real numbers greater than or equal to 1. Determine all functions $f : S \to S$, so that for all real numbers $x, y \in S$ with $x^2 - y^2 \in S$ the condition $f(x^2 - y^2) = f(xy)$ is fulfilled.
3	(i) For which triangles with side lengths a, b and c apply besides the triangle inequalities $a+b > c, b+c > a$ and $c+a > b$ also the inequalities $a^2 + b^2 > c^2, b^2 + c^2 > a^2$ and $a^2 + c^2 > b^2$?
	(ii) For which triangles with side lengths a, b and c apply besides the triangle inequalities $a+b > c, b+c > a$ and $c+a > b$ also for all positive natural n the inequalities $a^n + b^n > c^n, b^n + c^n > a^n$ and $a^n + c^n > b^n$?
-	Day 2
4	For an integer $n \text{ let } M(n) = \{n, n+1, n+2, n+3, n+4\}$. Furthermore, be $S(n)$ sum of squares and $P(n)$ the product of the squares of the elements of $M(n)$. For which integers n is $S(n)$ a divisor of $P(n)$?
5	Show that the inequality $(x^2 + y^2 z^2)(y^2 + x^2 z^2)(z^2 + x^2 y^2) \ge 8xy^2 z^3$ is valid for all integers x, y and z . When does equality apply?
6	Let U be the center of the circumcircle of the acute-angled triangle ABC . Let M_A , M_B and M_C be the circumcenters of triangles UBC , UAC and UAB respectively. For which triangles ABC is the triangle $M_A M_B M_C$ similar to the starting triangle (with a suitable order of the vertices)?

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱