Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 22014

www.artofproblemsolving.com/community/c1044438
by parmenides51

- Day 1

1 For each positive natural number n let $d(n)$ be the number of its divisors including 1 and n. For which positive natural numbers n, for every divisor t of n, that $d(t)$ is a divisor of $d(n)$?

2 Let S be the set of all real numbers greater than or equal to 1 .
Determine all functions $f: S \rightarrow S$, so that for all real numbers $x, y \in S$ with $x^{2}-y^{2} \in S$ the condition $f\left(x^{2}-y^{2}\right)=f(x y)$ is fulfilled.

3 (i) For which triangles with side lengths a, b and c apply besides the triangle inequalities $a+b>$ $c, b+c>a$ and $c+a>b$ also the inequalities $a^{2}+b^{2}>c^{2}, b^{2}+c^{2}>a^{2}$ and $a^{2}+c^{2}>b^{2}$?
(ii) For which triangles with side lengths a, b and c apply besides the triangle inequalities $a+b>$ $c, b+c>a$ and $c+a>b$ also for all positive natural n the inequalities $a^{n}+b^{n}>c^{n}, b^{n}+c^{n}>a^{n}$ and $a^{n}+c^{n}>b^{n}$?

- Day 2

4 For an integer n let $M(n)=\{n, n+1, n+2, n+3, n+4\}$. Furthermore, be $S(n)$ sum of squares and $P(n)$ the product of the squares of the elements of $M(n)$. For which integers n is $S(n)$ a divisor of $P(n)$?

5 Show that the inequality $\left(x^{2}+y^{2} z^{2}\right)\left(y^{2}+x^{2} z^{2}\right)\left(z^{2}+x^{2} y^{2}\right) \geq 8 x y^{2} z^{3}$ is valid for all integers x, y and z.When does equality apply?

6 Let U be the center of the circumcircle of the acute-angled triangle $A B C$. Let M_{A}, M_{B} and M_{C} be the circumcenters of triangles $U B C, U A C$ and $U A B$ respecrively. For which triangles $A B C$ is the triangle $M_{A} M_{B} M_{C}$ similar to the starting triangle (with a suitable order of the vertices)?

